

On behalf of:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

of the Federal Republic of Germany

Vietnam NDC Sectoral Report

Published by the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn, Germany

As of July 2021

Responsibility

Kia Fariborz Chief Technical Advisor Support to Viet Nam for Implementation of the Paris Agreement Project (VN-SIPA).

Authors

Prof. Dr. Mai Van Trinh, Ngo Duc Minh

Editors

Dao Minh Trang, Sascha Oppowa, Andreas Wilke, Dan Burns

Photos

Prof. Dr. Mai Van Trinh, ©giz ASEAN REI/Vu Hai Luan, Page 55, ©giz ASEAN REI/ Nguyen Chau Ngoc San, Page 45

Disclaimer

The findings, interpretations and conclusions expressed in this document are based on information gathered by GIZ and its consultants, partners and contributors.

GIZ does not, however, guarantee the accuracy or completeness of information in this document, and cannot be held responsible for any errors, omissions or losses which result from its use.

On behalf of the

German Federal Ministry for Environment, Nature Conservation, and Nuclear Safety (BMU).

Vietnam NDC Sectoral Report

Table of Content Report

List of tables and figures	06
Acronyms and abbreviations	08
Executive Summary	10
01. Introduction	12
1.1. Background Information on the Paris Agreement and NDCs	12
1.2. Overview of the Agriculture Sector in Vietnam	13
1.3. Objectives and Scope of the Study	16
02. Mitigation efforts in the agriculture sector	17
2.1. Policies Related to Mitigation in the Agriculture Sector	17
2.2. Mitigation Actions	26
03. Greenhouse gas inventory of the agriculture sector in 2014	27
3.1. Methodology, Data, and Emissions Factors	27
3.2. Results	42
04. Development of the business-as-usual scenario for the agriculture sector	,
in the period 2020-2030	46
4.1. Methodology, Input Data, and Assumptions	46
4.2. Results	52
05. Development of the mitigation scenario for the agriculture sector in the	
period 2020 - 2030	54
5.1. Assumptions, Methodology, and Input Data	54
5.2. Results	59

. Requirements for the implementation of mitigation options in the agricult sector				
6.1. Policies	68			
6.2. Technologies, Finance, and Capacity Building	68			
07. Measurement, Reporting, and Verification for mitigation activities in the agriculture sector	72			
7.1. Measurement, Reporting, and Verification at national level	72			
7.2. Measurement, Reporting, and Verification for Mitigation Activities in the Agriculture Sector	73			
Conclusion	76			
References	78			

+

List of tables and figures Report

Table 1: Agricultural land and crop area	13
Table 2: Agro-forestry-fisheries output of the agriculture sector (1990 - 2015)	14
Table 3: Summary of recently issued policies related to GHG emissions reduction in the agriculture sector	17
Table 5: The general approach to estimating GHG emissions from the agriculture sector	27
Table 6: Data on animal population in 2014	28
Table 7: Enteric fermentation CH4 emissions factors for livestock	28
Table 8: Activity data to estimate GHG emissions from manure management in 2014	29
Table 9: Ratio of excretion of volatile solids from livestock waste	30
Table 10: Maximum methane producing capacity for manure produced by animal type	30
Table 11: Methane conversion factors (MCF) for each manure management system	31
Table 12: Management of livestock waste at household level in each climate zone	31
Table 13: Emissions factors for dairy cows, non-dairy cattle, buffalo and swine in each manure management	system
in different climate regions	31
Table 14: Emissions factors for sheep, goats, horses, poultry in each manure management system in differer	ıt
climate regions	32
Table 15: N-excretion rate per animal	32
Table 16: N_2O emissions factor for each AWMS	33
Table 17: Rice production area in Vietnam	34
Table 18: Rice ecosystems under different water management regimes in Vietnam	35
Table 19: CH ₄ emissions scaling factors for rice ecosystems and water management regimes relative to cont	inuously
flooded fields (without organic amendments)	35
Table 20: CH_4 emissions factors for continuously flooded regimes	35
Table 21: CH ₄ emissions scaling factors for rice ecosystems and water management regimes relative to cont	inuously
flooded fields (without organic amendments)	36
Table 22: Crop production in 2014	37
Table 23: Total amount of Nitrogen fertilizer consumption 2014 (N _{FERT})	37
Table 24: Area of the burned savannah in 2014	38
Table 25: Emissions factors used to estimate emissions from burning savannah in Vietnam	38
Table 26: Crop residue ratio as compared with crop output	39
Table 27: Dry matter fraction of crops	40
Table 28: Field burning ratios	40
Table 29: Carbon fraction in crop residues	41
Table 30: Nitrogen fraction in crop residues	41

Table 31: Emissions ratios for agricultural residue burning calculations	42
Table 32: Emissions of CH_4 from enteric fermentation in 2014	42
Table 33: CH_4 emissions from livestock manure management in 2014	43
Table 34: N ₂ O emissions for each AWMS in 2014	43
Table 35: CH_4 emissions from irrigated rice cultivation in 2014	43
Table 36: Direct N ₂ O-N emissions from agricultural soils in 2014	44
Table 37: Direct emissions from manure deposited during grazing in 2014	44
Table 38: Indirect N emissions from 1) fraction of N ₂ O produced from atmospheric deposition; 2) from nitrogen	
volatilisation from soils + associated with nitrogen leached from soils; 3) $N_2^{}O$ from the discharge of	
human wastewater in 2014	44
Table 39: GHG emissions from burning savannah in Vietnam in 2014	44
Table 40: GHG emissions from the agriculture sector in 2014	45
Table 41: Projection for livestock population in different climate regions in 2020	47
Table 42: Projection for livestock population in different climate regions in 2030	47
Table 44: Projection for rice cultivation in different regions in 2030	49
Table 45: Projection for rice ecosystems under water management regimes in 2020	50
Table 46: Projection for rice ecosystems under water management regimes in 2030	50
Table 47: Projections for the amount of nitrogen fertilizer consumption in 2020 and 2030	50
Table 48: Projections for crop production in 2020 and 2030	51
Table 49: Area of the burned savannah	51
Table 50: Estimated above-ground matter/biomass	52
Table 51: BAU scenario of the agriculture sector in the period 2020-2030	52
Table 52. Comparison between the BAU scenario in Vietnam's NDC1 and the revised NDC1	53
Table 53: Assumptions for mitigation options in the agriculture sector	56
Table 54: Plan for implementation of options to 2030	57
Table 55: Unconditional mitigation options in the agriculture sector	59
Table 56: Conditional mitigation options in the agriculture sector	59
Table 57: Investment cost for mitigation options	61
Table 58: Impacts of mitigation options on the socio-economy and environment	63
Table 59: Mitigation options in the INDC (2015)	65
Table 60: Mitigation options reviewed and proposed by MARD for INDC implementation in the agriculture sector	66
Table 61: JICA's assessment results of mitigation technologies	67
Table 62: Requirements for technology, finance and capacity building for implementation of mitigation options	69
Table 63: Proposed MRV activites for mitigation options in the agriculture sector	73
Figure 1: Cost curve for mitigation options in the agriculture sector in 2030	61
Figure 2: The proposed MRV system at national level	73

Acronyms and abbreviations Report

Conservation, and Nuclear Safety
2
ent
d Nations
nmenarbeit
Inventory of the IPCC
agement of uncertainty in Climate change

IPM	Integrated Pest Management
JOFCA	Japanese Forestry Consultants' Association
LCASP	Low Carbon Agriculture Support Program
LULUCF	Land Use, Land Use Change and Forestry
MACC	Marginal Abatement Cost Curve
MARD	Ministry of Agriculture and Rural Development
MONRE	Ministry Of Natural Resources And Environment
MRV	Measurement, Reporting and Verification
MUB	Molasses Urea Blocks
NAMA	Nationally Appropriate Mitigation Actions
NDC	Nationally Determined Contribution
SF	Scaling Factor
SRI	System of Rice Intensification
SNC	Second National Communication
UNDP	United Nation Development Program
UNFCCC	United Nations Framework Convention on Climate Change
VGGS	Vietnam Green Growth Strategy

Executive Summary

The following paper is part of a five-report series, produced in the context of the 2017-2020 revision and update of Vietnam's Nationally Determined Contribution (NDC).

> Each of these works addresses a different covering agriculture, sector. energy, industrial processes and product use (IPPU), land use, land-use change and forestry (LULUCF), and waste. They all provide extensive trend analyses of a sector's projected greenhouse gas (GHG) emissions for the period of 2014-2030, which take current policy measures into consideration and assume no major changes moving ahead (business-as-usual scenario, BAU). On the basis of selected mitigation options, each paper outlines feasible mitigation scenarios that would see signification GHG emission reductions for the respective sector until 2030, as well as associated marginal abatement costs.

> These five reports have informed the Government of Vietnam's updated and revised NDC, which is available at UNFCCC https://www4.unfccc.int/sites/ndcstaging/ PublishedDocuments/Viet%20Nam%20 First/Viet%20Nam_NDC_2020_Eng.pdf. A technical background report, published by the Ministry of Natural Resources and Environment (MONRE), comprises more information.

In this study for agriculture, the IPCC Revised 1996 Guidelines on National GHG Inventory and Good Practice Guidance on National GHG Inventory in 2000 were used to develop the BAU scenario for agriculture in the period 2014-2030. The results show that GHG emissions from the agriculture sector in 2020 and 2030 will reach 104.5 MtCO₂e and 112.1 MtCO₂e, respectively. These values are slightly higher that those of the NDC1.

The mitigation scenario was developed based on the assumption that additional action plans or policies are developed or considered. The Agriculture and Land Use (ALU) software was used for the calculation of the GHG mitigation options in the agriculture sector. The GHG mitigation options were reviewed for efficiency, incremental costs, mitigation potential and co-benefits compared to the BAU scenario. Sixteen GHG mitigation options were identified and assessed. In the case of the unconditional contribution, there are four mitigation options: A1. AWD and SRI (where infrastructure is fully financed); A2. Mid-season drainage in rice cultivation; A3. Shifting double rice or triple rice cultivation to rice-shrimp; and A4. Shifting double rice or triple rice cultivation to upland crops at scale.

With international support, Vietnam can implement twelve additional mitigation options: A5.1. Improvement of dairy cow diets; A5.2. Improvement of dairy cow beef; A5.3. Improvement of buffalo; A6.1. Reuse of upland agricultural/crop residues as organic fertilizer; A6.2. Introduction of biochar (large scale); A7.1. ICM in rice cultivation; A7.2. ICM for annual upland crops cultivation; A8. Substitution of urea with ammonium sulphate fertilizer; A9.1. AWD and SRI (where infrastructure is partly financed); A9.2. AWD and SRI (where there is basic infrastructure), and A10. Drip irrigation combined with fertilizer for coffee. In addition to mitigation potential, these options bring back co-benefits to the economy, society, environment and climate change adaptation.

In order to achieve its mitigation targets, the study also recognized the barriers and needs for policy, technology, finance and capacity building, and MRV. The total amount of domestic funding needed is USD 1329.2 million. An additional USD 4,604.7 million would need to be mobilized from international sources in order to implement the conditional contribution.

01. Introduction

1.1. Background Information on the Paris Agreement and NDCs

The Paris Agreement on Climate Change was adopted by the states in COP 21 as the first global legal document regulating responses to climate change. The focus of the Paris Agreement is on the introduction of regulations concerning the responsibility for developing and implementing a Nationally Determined Contribution (NDC) of each of the Parties to the United Nations Convention Framework on Climate Change (UNFCCC). So far, the Agreement has been signed by 195 countries, ratified by 179 parties, and officially entered into force on 4 November 2016.

Although countries had submitted NDCs by the end of 2015, even if all NDCs are fully implemented the global average

temperature may still increase by 2.9°C to 3.4°. Achieving a target of 1.5°C will require zero global GHG emissions between 2060-2080 and around 2080-2090 for the 2°C target. Therefore, Decision No. 1/CP21 of the Paris Agreement on Climate Change requires all parties to review and update their NDCs at least every five years with the expectation of increasing their ambition to contribute to mitigating GHG emissions. All States are required to submit their NDC (new or updated) by 2020 and every five years thereafter at least 9-12 months prior to the Conference of the Parties to the Paris Agreement (CMA). Consequently, countries are required to continually review their NDCs in order to identify options to raise ambition and mitigate the current contribution. The UNFCCC requires the parties to submit a revised NDC for the first time by 2020. The NDC revisions should consider a medium-term plan as well as a long-term plan to reduce GHG emissions. In addition, Article 13 of the Paris Agreement on Climate Change requires States to develop a transparent framework that requires parties to regularly submit GHG inventory reports and provide information on the NDC implementation process, support, and adaptation efforts. Technical assessments will be made for all parties to analyze the consistency of the information, identify areas in need of improvement, and strengthen capacity. The parties will also participate in facilitative, multilateral considerations of progress with respect to the respective implementation and achievement of their NDC's goals.

Recently, Vietnam planned to review and update its NDC with a view to submitting an updated NDC to UNFCCC in 2019. Thereby, Vietnam is fulfilling a requirement of the Paris Agreement - outlined in decision 1/CP21). Reviewing and updating its NDC is also an official requirement of the Vietnam Government. In 2016, the Prime Minister approved the Plan for the implementation of the Paris Agreement on Climate Change. In that plan, task No. 1 requires updating of the NDC's mitigation component and task No. 17 requires updating the NDC's adaptation component.

1.2. Overview of the Agriculture Sector in Vietnam

Vietnam was primarily an agriculture-based country 30 years ago. Vietnam's economy was based on backward self-sufficient production; and agricultural output was insufficient to meet domestic demand for food. After two decades of growth, Vietnam went from being a food importer to being one of the top five world leading suppliers and exporters of rice, coffee, rubber, pepper, cashew nuts and other agricultural products. In the period 2000 - 2012, the output value of agriculture, forestry and fisheries continued to increase at an average rate of 5.1% per year. In terms of the value added of the agriculture sector, the average growth rate of 3.7%/year in agricultural GDP during that period was relatively high and stable compared to other Asian countries (e.g. China 4.1%, Philippines 2.9%, Thailand 2.8%). The structure of agricultural production has gradually shifted towards higher efficiency and is more responsive to market demand in both crop change and production methods. During 2000-2012, the share of seafood in the total value of agriculture, forestry and fisheries output rose from 16.3% to 22.4%, while the share of cultivation and livestock declined from 80% to 74.9%.

	1990	1995	2000	2005	2010	2015
Total area of crop cultivation	9,040.00	10,496.90	12,644.30	13,287.00	14,061.10	14,919.60
Annual crops	8,101.50	9,224.20	10,540.30	10,818.80	11,214.30	11,674.30
Food crops	6,476.9	7,324.30	8,399.10	8,383.40	8,615.90	8,996.30
Rice	-	-	-	-	-	4,143.10
Annual industrial crops	542	716.7	778.1	861.5	797.6	676.6
Perennial crops	938.5	1,272.70	2,104.00	2,468.20	2,846.80	3,245.30
Perennial industrial crops	657.3	902.3	1,451.30	1,633.60	2,010.50	2,154.50
Fruit trees/crops	281.2	346.4	565	767.4	779.7	824.4

Table 1: Agricultural land and crop area

Source: GSO, 2017

Unit: hectare

Data in Table 1 show that the total area of crop cultivation includes food crops (includes food crops and rice and annual industrial crops, perennial crops (includes perennial industrial crops and fruit trees/crops). For the rice area, one set of statistical data is available for 2015, while for later years, data is available for three seasons a year. Annual industrial crops dropped after 2015 because of low yields, less area, and climate.

In 2017, the export value of agro-forestry-aquatic products reached USD 36.37 billion, representing a year-on-year increase of 13 percent. The export of major agricultural products was estimated at USD 18.96 billion, a yearon-year growth of 15.7 percent. There are seven key agricultural export products each with an export value of more than USD 1 billion: cashew nuts, vegetables, coffee, rice, pepper, cassava and rubber. Some key potential agricultural products (such as tea, maize and temperate fruit) play a crucial role in the livelihoods and the incomes of local people in mountainous regions.

Vietnam is a typical humid tropical country with favorable conditions for agricultural production in terms of climate, soil, hydrology, and variety of crops. As basic resources for agricultural production have become increasingly scarce at the global level, a new higher price level for agricultural products will be reached in the future. This trend will create favorable conditions for countries with comparative advantages in agriculture, but also highlights competition in natural resources use for agricultural growth.

Table 2: Agro-forestry-fisheries output of the agriculture sector (1990 - 2015)

					Unit: 1000 tons
Productivity	1990	2000	2005	2010	2015
I. Food crops		34,538.9	39,621.6		
1. Rice		32,529.5	35,832.9	40,005.6	45,105.5
2. Maize		2,005.90	3,787.10	4,625.7	5,287.2
3. Sugarcane		15,044.3	14,948.7	16,161.7	18,335.8
4. Cotton		18.8	33.5	12.5	1.3
5. Groundnut		355.3	489.3	487.2	454.1
6. Soybean		149.3	292.7	298.6	146.4
II. Fruit crops/trees					
1. Grape			28.6	16.7	31
2. Mango			367.8	580.3	702.9
3. Citrus			601.3	728.6	727.4
4. Longan			612.1	573.7	513
5. Lychee, rambutan			398.8	522.3	715.1
III. Industrial crops					
1. Cashew nuts	-	67.6	240.2	310.5	
2. Rubber	57.9	290.8	481.6	751.7	

Unit: 1000 tons

1990	2000	2005	2010	2015
92.0	802.5	752.1	1100.5	
145.1	314.7	570.0	834.6	
8.6	39.2	80.3	105.4	
	48.4	59.8	83.6	85.8
	93.8	142.2	278.9	299.7
	1,418.1	2,288.3	3,036.4	3,491.6
	292.9	321.9	615.2	908.1
	51.5	197.7	306.7	723
	3,771.0	3,948.5	6,421.9	8,874.3
	5,958.0	13,591.0	11,944.4	15,478.1
	7,153.0	11,475.0	7,106.50	6,542.90
	2,250.90	3,466.80	5,142.70	6,582.10
	1,660.90	1,987.90	2,414.40	3,049.90
	590	1,478.90	2,728.30	3,532.20
	92.0 145.1	92.0 802.5 145.1 314.7 8.6 39.2 48.4 93.8 1,418.1 93.8 1,418.1 292.9 51.5 51.5 3,771.0 5,958.0 7,153.0 2,250.90 1,660.90 1,660.90	92.0 802.5 752.1 145.1 314.7 570.0 8.6 39.2 80.3 48.4 59.8 93.8 142.2 1,418.1 2,288.3 292.9 321.9 51.5 197.7 3,771.0 3,948.5 5,958.0 13,591.0 7,153.0 11,475.0 1,660.90 1,987.90	92.0802.5752.11100.5145.1314.7570.0834.68.639.280.3105.48.639.280.3105.448.459.883.693.8142.2278.91,418.12,288.33,036.4292.9321.9615.251.5197.7306.73,771.03,948.56,421.95,958.013,591.011,944.47,153.011,475.07,106.501,660.901,987.902,414.40

Source: GSO, 2018

Despite great achievements, agriculture and the rural sector are facing serious difficulties and challenges. Average agricultural GDP growth fell from 4% per year in the period 1995 - 2000 to 3.8% per year during 2001-2005 and 3.4% per year during 2006-2012. The proportion of value added in the total value of agricultural production (GDP/production value) decreased from 45.6% in 2000 to 38.1% in 2012 (at constant 1994 prices). Productivity growth of key crops including rice and coffee has gradually declined. In the animal husbandry and aquaculture sectors, diseases have become widespread, which seriously affect both productivity and the incomes of farmers.

Agricultural growth in Vietnam is based on intensive natural resource use. Misuse of fertilizers, plant protection chemicals and veterinary medicines are common. While achieving economic targets, agricultural production causes adverse environmental effects, depleting natural resources such as soil, groundwater, surface water, minerals and biodiversity. The adverse impacts of climate change on agricultural production are increasing. Agriculture is not only a sector affected by climate change but also a major source of greenhouse gas (GHG) emissions that increase global warming. Weaknesses in the management of water resources and agricultural residues also cause increasing pollution and GHG emissions. Rice cultivation, enteric fermentation, agricultural land use, animal waste management and agricultural by-product waste are major sources of GHG emissions. Thus, GHG emissions from agricultural production are significant in determining the structure of national emissions. Proposing measures to reduce GHG emissions is of clear importance.

Globally, key sources of GHG emissions are rice cultivation, enteric fermentation, agricultural soils and manure management, burning of savannahs and burning of agricultural residues. The Second National Communication (SNC) identifies the agriculture sector as a key source of GHG emissions, estimated at about 43% of total national emissions in 2000 (MONRE, 2010). The SNC, however, also forecasts that by 2010, while agricultural emissions are likely to continue to rise, rapid economic growth will cause energy emissions to rise even more rapidly. Within the agriculture sector in Vietnam, paddy rice is a key source of GHG emissions, mainly in the form of methane and nitrous oxide. However, livestock emissions are increasing rapidly due to rapid growth in animal production as a consequence of rising demand.

The Ministry of Agriculture and Rural Development (MARD) has already initiated actions to reduce GHG emissions through its "New Rural Area" master plan, which includes a commitment to reduce GHG emissions by 20%, while increasing rural productivity by 20% and reducing poverty by 20%. With the development of the green growth strategy, Vietnam is further deepening its commitment to green growth. Within the context of the Vietnam Green Growth Strategy (VGGS), agriculture is identified as a key sector, delivering eco-system services such as increased carbon sequestration and reliable and secure access to food, and contributing to continued economic growth.

1.3. Objectives and Scope of the Study

In 2015, under the leadership of the Ministry of Natural Resources and Environment (MONRE) and with support from the German Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) through Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) and the United Nations Development Programme (UNDP), Vietnam successfully submitted its Intended Nationally Determined Contribution (INDC) to the Secretariat of the UNFCCC. Vietnam's INDC is implemented at the national level in relevant sectors, including the energy, agriculture, Land Use, Land Use Change and Forestry (LULUCF), and waste sectors.

However, so far there have been a number of changes in the Vietnamese context that may affect the potential and costs of GHG reduction as well as the targets in Vietnam's INDC. Therefore, it is necessary to review and update the BAU and mitigation scenario for the agriculture sector for the period 2020-2030. The goal of this study is to develop a plan to reduce GHG emissions for the agriculture and rural development sector to 2030 in line with commitments under the Paris Agreement. In order to reach the general objectives, the following specific objectives have been identified:

- » Estimate BAU GHG emissions in the agricultural and rural development sector
- » Identify options to reduce GHG emissions in the agriculture and rural development sector
- » Calculate the mitigation potential and cost for each option
- » Assess the economic, social and environmental benefits and co-benefits with climate change adaptation for each mitigation option
- » Propose investment and implementation plans for the selected options

The scope of this study is as follows:

Sector: All sub-sectors of the agriculture sector, including: enteric fermentation; manure management; rice cultivation; agriculture soils and field burning of agricultural residues.

Base year: The year 2014 was chosen since this is the latest year for which national data was available for modelling.

Types of GHGs: This study includes Carbon dioxide (CO₂), Methane (CH₄) and Nitrous oxide (N₂O).

02. Mitigation efforts in the agriculture sector

2.1. Policies Related to Mitigation in the Agriculture Sector

The Ministry of Agriculture and Rural Development (MARD) has been working to reduce GHG emissions through a new rural program that targets 20% reduction in GHG emissions, 20% growth in agricultural production and 20% reduction in poverty by 2020 (Decision 3119, 2011). In the Vietnam Green Growth Strategy, agriculture has also been identified as a potential sector for reducing GHG emissions while also ensuring food security and safety, and the provision of ecosystem services. Recently, Vietnam has issued a number of policies related to socio-economic development, green growth and low carbon agriculture (Table 3).

Table 3: Summary of recently issued policies related to GHG emissions reduction in the agriculture sector

No	Policy name	Key policies
1		Develop strategies for economic green growth with average reduction of 8-10% of GHG emissions in 2020
2	Decision No. 403 / QD-TTg dated 20 March 2014 of the Prime Minister approving the National Green Growth Action Plan for the 2014-2020 period	Action plans with list of projects that should be implemented in the planning period

No	Policy name	Key policies
3	Decision No. 124 / QD-TTg dated 2 February 2012 of the Prime Minister approving the Master Plan for Development of Agricultural Production and Rural Development	To make a plan for GDP growth for the agriculture sector in period of 2011-2020 with the following structure: agriculture (64.7%), forestry (2%), aquaculture 33.3(%) with a vision to 2030 with the structure: agriculture 55(%), forestry (1.5%), and aquaculture (43.5%)
		a) Sustain growth and raise efficiency and competitiveness by increasing productivity, quality, and added value; satisfy the demands of consumers in Vietnam and boost exports. GDP growth of the agriculture sector reaches 2.6%-3% during 2011-2015, and 3.5% - 4% during 2016-2020;
4	Decision No. 899 / QĐ-TTG dated 10 June 2013 of the Prime Minister approving the project of restructuring the agriculture sector in the direction of enhancing added value and sustainable development	b) Raise the incomes and improve living standards of rural residents, ensure food security (including nutrition security) in both the short and the long term; contribute to the reduction of the poverty ratio. By 2020, incomes for rural households increase by 2.5 times in comparison to 2008; 20% of communes meet the standards of new rural areas by 2015, and 50% of communes meet such standards by 2020;
		c) Enhance natural resource management, reduce GHG emissions and negative impacts on the environment, utilize environmental benefits, raise capacity for risk management, enhance disaster preparedness, and increase forest coverage to 42% - 43% by 2015, and to 45% by 2020; contribute to VGGS.
5	Decision 809 / CT-BNN	Integrating climate change into the formulation and implementation of strategies, master plans, programmes, and projects on development of the agriculture and rural development sector in the period 2011-2015
		Action plan for reducing GHG emissions in agriculture to 2020, in which
6	Decision No. 3119 / QD-BNN-KHCN dated	Crop production reduces 5.72 Gt CO2e
	16 September 2011 of MARD approving the	Livestock reduces 6.3 Gt CO2e
	action plan for GHG emissions reduction in agriculture and rural areas up to 2020	Forestry reduces/absorbs 1371 Gt CO2e
		Water resources reduces 0.17 Gt CO2e
		Rural development reduces 4.78 Gt CO2e

No	Policy name	Key policies
		Strengthen capacity on climate monitoring and early warning
		Ensure food and water security
		Proactively respond to disasters; prevent inundation of big cities; strengthen security of river and sea dikes, and reservoirs
		Reduce greenhouse gas emissions and develop a low carbon economy
7	Decision No. 1474 / QD-TTg dated 5 October 2012 of the Prime Minister on the promulgation of the National Action Plan on	Improve management capacity, finalize mechanisms and policy on climate change
	Climate Change 2012-2020	Raise awareness and develop human resources
		Develop science and technology as a foundation for formulating policies, assessing impacts and identifying measures on climate change adaptation and mitigation.
		Cooperate with the world to improve the status and role of Vietnam in international activities on climate change
		Mobilize sources and finance to respond to climate change
8	Decision No. 1775 / QD-TTg dated 21 November 2012 of the Prime Minister approving the project on greenhouse gas emissions control, managing carbon credit trading activities in the world market	Management of GHG emissions in order to implement the UNFCCC and other international agreements to which Vietnam is a party, and at the same time take advantage of the opportunity to develop a low carbon economy, green growth, and together with the international community in efforts to reduce greenhouse gas emissions, contribute to sustainable development
		Managing and monitoring efficiency of the purchase, sale and transfer of carbon credits generated from the mechanism inside and outside the framework of the Kyoto Protocol on the world market
	Decision No. 819/QD-BNN-KHCN dated 14 March 2016 of MARD approving the Action Plan for Response to Climate Change in Agriculture and Rural Development 2016-	Capacity building in science, technology and policy to respond to climate change in the period 2016-2020 with a vision toward sustainable agricultural production
9		Detail adaptation and mitigation actions for each sub-sector in the period 2016-2020
	2020, with a Vision to 2050	Increase activities for responding, avoiding and mitigating

No	Policy name	Key policies
		Approving the environmental programme to cope with climate change and green growth in the period 2016-2020
	Decision No. 1670/QD-TTg dated 31 October	Adapt to the impacts of climate change and reduce GHG emissions; strengthen the capacity of people and natural systems to adapt to climate change; achieve green growth, and progress towards a low- carbon economy
10	2017 by the Prime Minister	Restructure economic institutions, encourage 'greening' and economic development using energy efficiently
		Actively implement international and national climate commitments
		Implement commitments to reduce GHG emissions after 2020 (enshrined in the Paris Agreement and Vietnam's NDC)
11	Decision No. 923/QD-BNN-KH dated 24 March 2017 of MARD on green growth	Effectively implement the VGGS; develop green agriculture while ensuring social and environmental issues and EE, using natural resources for a low carbon economy, reducing emissions and enhancing livelihoods. Enhance GHG absorption capacity in line with resources and the real situation; build eco-friendly lifestyles, contributing to adaptation to climate change
11		Reform farming techniques and improve agricultural management to reduce GHG emissions in agroforestry and fisheries production, thereby achieving a 20% reduction of GHG emissions from the agriculture and rural development sector by 2020, compared to 2010

2.1.1. Action plan for GHG emissions reduction at sectoral level

At sectoral level, MARD issued Decision 3119/QD-BNN-KHCN in 2011 which focused on two main objectives:

- » Promoting green and safe agricultural production for low emissions, sustainable development and ensuring national food security, contributing to poverty reduction and effectively responding to climate change.
- » Up to 2020, reducing total GHG emissions in the agriculture and rural development sector by 20% compared with BAU; simultaneously ensure the 20% growth target for agriculture and rural development, and reduce the poverty rate according to the sectoral development strategy.

The main activities to reduce GHG emissions in the agriculture and rural development sector are as follows.

2.1.1.1. Crop production

- » Apply improved cultivation techniques to rice production, such as irrigation and saving inputs (including systems of rice intensification (SRI), three reduction and three gains (3G3T), one obligation and five reduction (1P5G), and alternate wetting and drying (AWD)) to reduce GHG emissions.
- » Collect and reuse rice straw to completely restrict its burning and directly limit incorporation of rice residues into soil that increase GHG emissions and environmental pollution.

- » Apply technical solutions to enhance the effectiveness of nitrogen fertilizers to reduce N₂O emissions from paddy cultivation and other crops.
- » Transform parts of the rice cultivation area with low output to short duration industrial crops with low emissions and higher economic revenue.
- » Transform one rice crop from land with 2-3 rice harvests with low output along rivers and coasts to aquaculture (shrimp, fish) to obtain higher economic value.
- » Apply solutions to save energy and fuel in land preparation, irrigation for industrial crops, and develop and apply minimum tillage to reduce GHG emissions.
- » Develop and apply technology to treat and reuse crop residues from vegetable production, short duration and perennial industrial crops, and sugar cane to reduce GHG emissions from crop residue decomposition.

2.1.1.2. Livestock

- » Change the feed composition for animal and poultry raising to reduce GHG emissions from livestock activities.
- » Provide Molasses Urea Blocks (MUBs) as milk cow feed to reduce GHG emissions.
- » Apply biogas to treat animal waste and produce bio-fuel to replace fossil fuels.
- » Apply composting technology to treat animal and poultry waste to reduce GHG emissions.
- » Apply the VietGAP model (good agricultural practices) in livestock production.
- » Replace partly raw foods with treated food and enhance quality of fermented feed for livestock production.
- » Enhance the immunity and biological control for animal and poultry production.
- » Apply and use antibiotic bacteria and intestine bacteria to reduce GHG emissions from livestock production.

» Improve waste collection systems in cattle barns, and systems for storing and treating animal waste.

2.1.1.3. Aquaculture

- » Adjust the unsuitable capacity of fishing boats with fishing grounds; re-plan fishing routines and determine optimal regions to reduce GHG emissions from fishing activities.
- » Improve fishing techniques and technologies in fishing activities to reduce GHG emissions.
- » Establish and improve models of fishing services, and protect fishing grounds to reduce GHG emissions as a result of fuel savings.
- » Renew offering services for aquaculture such as fish varieties, feed, medicine, chemical, fertilizer and equipment supplies to reduce GHG emissions.
- » Improve aquacultural technologies, techniques and waste management for aquaculture to reduce GHG emissions.

2.1.1.4. Other activities (irrigation, rural activities and occupations)

- » Enhance effectiveness of irrigation and drainage pumping systems to save energy and reduce GHG emissions.
- » Improve irrigated systems to prevent water loss and effectively manage and stabilize irrigation systems, and explore autonomous water running systems to reduce loss and save irrigated water.
- » Apply new technologies and equipment in constructing irrigation and drainage systems to save energy.
- » Save electricity consumption from handicraft production and processing activities.
- » Develop and apply suitable equipment to use energy efficiently, and to use bio-fuels, solar and other forms of renewable energy.
- » Select and develop new materials, techniques and equipment to enhance production effectiveness, save

inputs and reduce emissions in artisanal villages, agriculture, forest and fish processing activities.

- » Transfer technologies for treatment and reuse of rural organic waste and waste from production in artisanal villages, food and wood processing plants (sawdust, byproducts), fish processing, mills, and processing plants for sugar and coffee, etc.
- » Develop and apply clean technology to save inputs and reduce emissions from artisanal villages and from food, fishery and forest processing activities.

2.1.2. Action Plan on Climate Change Response for the agriculture and rural development sector

MARD issued Decision No. 543/QD-BNN-KHCN on Action Plan on Climate Change Response for the Agriculture and Rural Development Sector in the period 2016-2020 with a vision to 2050. This decision aims to strengthen the capacity of the agriculture and rural development sector to mitigate GHG emissions, reduce impacts from climate change, and to promote sustainable development. The five main objectives are:

- » Stabilise and ensure safety for residents of the cities, regions, particularly the Mekong River Delta, the Northern Delta and the Central Coastal Zone.
- » Ensure stable production of agriculture, forestry, fisheries and salt production towards low emissions orientation and sustainable development
- » Ensure food security and the maintenance of 3.8 million hectares of paddy land, of which 3.2 million hectares has at least 2 crops per year.
- » Ensure safety of the dike system, civil works, technical and economic infrastructure, so that it meets the requirements for natural disaster prevention and mitigation.
- » Keep sector growth at 20%, the poverty reduction rate of 20%, and GHG reduction at 20% in each 10-year period.
- » The action plan contains numerous detailed actions relating to mitigation activities:

- » Scale up advanced farming models such as good agricultural practice (VietGAP), integrated crop management (ICM), farming techniques 3 reduced 3, 1 reduced 5, management of disease, Integrated Pest Management (IPM), Advanced Rice Cultivating System (SRI), Minimal Soil, and Plant Cover.
- » Research and develop crop protection techniques and techniques to improve the efficiency of nitrogen use to reduce N_2O emissions.
- » Pilot the replication of models for collection, treatment and reuse of waste in cultivation (straw, corn, corn cobs, bagasse, sugarcane leaves, coffee husks, cassava) as organic fertilizers, biochar, animal feed, materials, and fillers, reducing environmental pollution and reducing GHG emissions.
- » Study the development of different kinds of feeds and change the ration of feeds in order to raise productivity and quality of animal products, with priority given to dairy cattle and ruminants.
- » Transform small-scale farming methods into animal husbandry, forming a key breeding area incorporating environmental protection, biosafety and high technology application.
- » Develop animal husbandry with priority to animal breeding that has highly resistant capacity to the living environment, in order to make good use of advantages and improve the livelihoods.
- » Enhance the application of advanced technologies in the treatment of animal waste as bio-organic fertilizers for safe livestock and environmental protection.
- » Continue to implement the biogas program, and research and select suitable filtering equipment to diversify the use. This will improve the efficiency of biogas utilization in animal husbandry to achieve triple benefits in terms of production, clean energy and reducing environmental pollution.
- » Study and develop incentive policies on fishery sector development and insurance under climate change context; policies on financial support, establishment

of the fund for renewable fisheries resources, shifting structure of fisheries exploitation in coastal and off-shore areas.

- » Research the development and transfer of shrimp-rice, fish-rice, shrimp-mangrove models, and aquatic-based adaptive models (EbA) to diversify livelihoods from fisheries.
- » Renovate support services for aquaculture, such as the supply of seeds, feeds, chemicals for environmental treatment, pollution warning, treatment, materials, and fishing gear for aquaculture farms.
- » Promote the preservation, processing, development and application of post-processing catfish technologies to produce bio-energy of high economic value.
- » Replicate and improve the model of irrigation and drainage of rice fields, and drip irrigation and sprinkler irrigation for coffee production areas, fruit trees, shallow and vegetable crops with economic value in specialized areas.

2.1.3. Agricultural restructuring program

Decision No. 899/QD-TTg dated June 10, 2013 of the Prime Minister approving the Project on "Agricultural restructuring towards raising added value and sustainable development".

The Decision contains some actions relating to mitigation activities, including:

» Reduce negative impacts on the environment due to the extraction of resources serving agriculture, forestry, and fisheries; enhance management efficiency and the use of resources (land, water, sea, forests); consider mutual effects and potential of resource extraction; enhance measures for reducing GHG emissions; efficient and safe use of chemicals, pesticides, and waste from breeding, farming, processing, and handicrafts; preserve biodiversity.

- » Encourage the application of environmental standards together with a strict supervision mechanisms to stimulate the development of a green agricultural supply chain.
- » Sustain and flexibly use 3.8 million hectares of paddy land to ensure food security and raise land use efficiency; rice production reaches 45 million tons by 2020; focus on improvement of rice varieties to raise the productivity and quality of rice; keep expanding corn areas to reach 8.5 million tons in order to supply materials for animal feed production and reduce imports.
- » Stabilize the coffee area at 500,000 hectares primarily in Tay Nguyen, the South East, Central Coast, and the North West; develop and run the program for replacing 150,000 hectares of old and unproductive coffee trees; increase rubber tree area to 800,000 hectares in the South East and Tay Nguyen; stabilize the cashew area at 400,000 hectares primarily in the South East, Tay Nguyen, and the Central Coast; stabilize pepper areas at 50,000 hectares in the South East and Tay Nguyen; increase tea area to 140,000 hectares in Lam Dong and the North midlands and highlands.
- » Prioritize the development of productive varieties and breeds that are able to resist pests and climate change; invest in pest surveillance projects, prevention, and control; support investment in preservation, processing, reduction of post-harvest loss, and assurance of food safety and hygiene.
- » Focus investment on focal irrigation works, dyke systems, and reservoir safety; prioritize investment in upgrading and maintenance works; build reservoirs in areas that suffer from drought; develop minor irrigation works in association with hydropower in highlands; support the application of measures for saving water; enhance the efficiency of irrigation works.

Mitigation action	Description	Implementation period	Budget	Quantitative goals	Results achieved
Biogas program for livestock	The program was widely implemented in 58 provinces/cities in Vietnam and was supported by the Government of the Netherlands. The overall objective of the program is to support the use and development of biogas technology to manage manure and animal waste while producing clean and low-cost fuel for energy, hence reducing GHG emissions	Phase I: 2003- 2005 Bridging phase: 2006 2015 2015	EUR 41.806 million, from which EUR 9.58 million is by grant from the Government of the Netherlands; additional sources from other donors and GHG emissions reduction credit selling	i) Support to build 160,000 biogas systems for the two phases ii) Emissions reduction of 800,000 tCO2e/ year for the two phases	Support for building 158,000 biogas systems Conducted training for 1,064 technicians, 1,668 biogas builders and organizing 140,000 dissemination and training workshops Provide clean energy source equivalent to 2,800 TJ/yr EUR 1.3 million received from the sale of 1,290,876 VGS credits
System of Rice Intensification Program	This program aims at development and application of an innovative rice cultivation technique "System of Rice Intensification" (SRI). This system includes new technical measures as follows: i) replanting of young rice (11-15 days); ii) replanting one line/cluster or sowing thinly; iii) alternate irrigation and drainage of exposed fields; iv) increasing the amount of organic fertilizer as much as possible to maximize air permeability of the soil and reduce the use of pesticides and chemical fertilizers. These measures will save investment costs, ensure increased rice yield and reduceGHG emissions from rice cultivation	2007 - 2016	VND 15 billion, of which VND 10 billion comes from the local budget, VND 5 billion from ODA	 i) Implementation of SRI for 500,000 ha of rice ii) Reducing production inputs (seed, fertilizer, pesticides, irrigation water) iii) Reducing emissions by 2 MtCO2e/year 	Emissions reduction of 4.68 tCO2e/ha per crop from SRI implementation 394,894 ha of rice fields in 23 provinces applied SRI technology in 2015 Increased average farmer incomes by USD 200/ha per crop compared to traditional farming

Mitigation action	Description	Implementation period	Budget	Quantitative goals	Results achieved
Low-carbon	The Low Carbon Agriculture Support Program (LCASP)	2013 - 2019	USD 84 million,	i) Support to build	By the end of 2016:
agriculture	project is an ADB loan project, implemented in 10		of which USD 74	65,000 small	
support	provinces, aiming to: improve the		million is from an	scale biogas	Supported the
program	management of livestock waste and agricultural by-		ADB loan	systems, 40	construction of 43,157
	product waste; produce biogas to generate clean			medium and two	small, 8 medium and 2
	energy sources and reduce environmental			large scale biogas	large scale biogas
	pollution; and replicate successful models of cost-			systems	systems. Training conducted
	effective low-carbon agricultural production which			ii) Emissions	for
	reduces GHG emissions.			reduction of	45,775 farmers, 375
				150,000 tCO2e/	masons, 1,125 technicians,
				year	and 10 contractors using
				iii) Six studies	small biogas plants
				on low-carbon	
				agriculture and	Urganized 1,500 training
				agricultural waste	courses.
				management	Development of the
				demonstration	database;
				models	Concessional loans
					provided to 335
					households with a total
					amount of VND 135
					billion (as of August
					2016)
					Source: MONRE, 2017

ц

2.2. Mitigation Actions

GHG mitigation actions in the agriculture sector are mainly based on:

- » The National Strategy for Green GHG emissions reduction (8-10%), the National Strategy for Natural Resources and Environment (Decision 1393/QĐ-TTG), and the Vietnam Green Growth Plan (Decision 403 / QĐ-TTG).
- » GHG emissions reduction plan for agriculture and rural development to 2020 (Decision 3119/QD-BNN-KHCN) with a plan to reduce GHG emissions by 20% by 2010 and reduce poverty by 20%.

Indicative GHG emissions reduction activities have been identified in the fields of cultivation, livestock husbandry, aquaculture, and irrigation:

- » Crop production and cultivation: mitigation activities include the application of advanced cultivation practices and technologies, such as short-season varieties, AWD, and crop residue management etc.
- » Livestock: mitigation activities include improvement of livestock diets to reduce methane emissions from ruminant

animals, animal waste management, and improvement of the production standards and regulations to ensure the complete chain from agriculture production, feed processing, livestock production and waste management appropriate with the climate change condition.

- » Aquaculture: mitigation activities include optimization of feeding intake for aquaculture, reuse of pond mud, use of high-capacity boats, and improvement of cooling systems.
- » Irrigation: mitigation activities include reduction of discharge to irrigation systems, water quality management, optimization of water use, and watersaving practices.

However, an MRV system has not been developed yet, so the impacts of these mitigation actions cannot be estimated comprehensively. Rather, some of these technologies are implemented as pilot experiments, with limited results.

A number of key mitigation actions implemented by MARD in the agriculture sector and their respective results are summarized in Table 4.

03. Greenhouse gas inventory of the agriculture sector in 2014

3.1. Methodology, Data, and Emissions Factors

The Revised Guidelines on National GHG Inventory of the IPCC (GL 1996 revised) were used to conduct the GHG inventory for the agriculture sector in 2014. According to IPCC, there are six sub-sectors under the agriculture sector: 4A. Enteric fermentation (CH_4) ; 4B. Manure management (CH_4) ; 4C. Manure management (N_2O) ; 4C. Rice cultivation; 4D. Agricultural soils; and 4E. Field burning of agriculture residues. The method to estimate GHG emissions for each sub-sector is presented in Table 5.

Table 5: The general approach to estimating GHG emissions from the agriculture sector

Sub-sector	Tier
4A Enteric Fermentation (CH4)	Tier 1
4B Manure Management (CH4)	Tier 2
4B Manure Management (N2O)	Tier 2
4C Rice Cultivation - Flooded Rice Fields	Tier 1 (CS EF)
4D Agricultural Soils	Tier 1a
4E Field Burning of Agricultural Residues	Tier 1

3.1.1. Enteric Fermentation (CH₄) – (4A)

a) Methodology

According to the revised IPCC GL1996, the amount of CH_4 emissions from enteric fermentation is calculated based on $\overset{4}{}$ the following equation:

$E = \sum_{i} A_{i} * EF_{i}$

Where:

E = total methane emissions from enteric fermentation (Gg

Table 6: Data on animal population in 2014

b) Activity data

i = animal type

A = population of animals (head)

CH₄/year)

The animal population by type of livestock in 2014 is presented in Table 6.

EF = emissions factor for each animal type, (kg/animal/year)

Livestock	Population (number of animal head)	Source of data
Dairy Cows	227,600	Statistical Yearbook of Agriculture and Rural Development in 2015 (MARD, 2016)
Non-Dairy Cattle	Dairy Cattle 5,006,700 Based on the total number of cows minus the total number of cows is taken from GSO Statist	
Buffalo	2,521,400	Statistical Yearbook 2015 (GSO, 2016)
Sheep	68,580	Numbers of sheep and goats in 2014 were calculated based on the number
Goats	1,600,320	of sheep and goats in 2013
Horses	66,678	
Swine	26,761,400	Statistical Yearbook 2015 (GSO, 2016)
Poultry	327,700,000	

c) Emissions factors

The emissions factors for calculating methane emissions from enteric fermentation are presented in Table 7.

Table 7: Enteric fermentation CH4 emissions factors for livestock

Unit: kg CH4/animal head/year

Livestock	Emissions factors	Source of data
Dairy Cows	56	
Non-Dairy Cattle	44	Table 4-4, page 4.11 (Asia) Revised 1996 IPCC Guidelines
Buffalo	55	
Sheep	5	-
Goat	5	Table 4-3, page 4.10 (developing countries) Revised 1996 IPCC Guidelines
Horses	18	-
Swine	1	-

28

3.1.2. Manure management (CH_4 , N_2O) – (4B)

3.1.2.1. CH_4 emissions from manure management

a) Methodology

According to the revised IPCC GL1996, the amount of GHG emissions from manure management is calculated based on the following equation:

$E = \sum_{ik} A_{ik} * EF_{ik}$

Where:

E = total methane emissions from manure management (Gg CH_4 /year)

EF = emissions factor for each animal type based on climate zone (kg/animal head/year)

A = population of animals (head)

i = the animal type;

k = climate zone

b) Activity data

The activity data to estimate CH₄ emissions from manure management is presented in Table 8.

Table 8: Activity data to estimate GHG emissions from manure management in 2014

Animal type Unit		Climate region >25oC	Data source		
Dairy Cows	Head	91,100	136,500	Statistical Yearbook of Agriculture and Rural Development in 2015 (MARD, 2016)	
Non-Dairy		Based on the total number of cows minus the number of dairy cows. The total number of cows is taken from GSO (2016)			
Buffalo	Head	2,263,600	257,800	Statistical Yearbook 2015 (GSO, 2016)	
Sheep	Head	3,800	64,780	Numbers of sheep and goats in 2014 were calculated	
Goats	Head	1,006,790	593,530	based on the number of sheep and goats in 2013	
Horses	Head	66,300	378		
Swine	Head	18,154,700	8,606,700	Statistical Yearbook 2015 (GSO, 2016)	
Poultry	Head	214,000,000	113,700,000		

c) Emissions factors

According to the revised IPCC GL1996, the emissions factors for calculating GHG emissions from manure management was calculated based on the following equation:

EF_i= VS_i*365 days/yr * Bo_i* 0.67 kg/m³ *Σ_{jk}MCF_{jk}* Ms_{ijk}

where:

EF_i = annual emissions factor (kg) for animal type i

VS_i = daily volatile solids excreted (kg) for animal type i

Bo_i = maximum methane producing capacity (m3/kg of VS) for manure produced by animal type i

 MCF_{jk} = methane conversion factors for each manure management system j by climate region k

MS_{ijk} = fraction of animal type i's manure handled using manure management system j in climate region k

The default value ratio of excretion of volatile solids (VS) from livestock waste (Table 9) and of the maximum methane producing capacity for manure by animal type (Table 10) were taken from the revised 1996 IPCC Guidelines.

Value (kg/animal/day)	Source
2.82	
1.58	
3.90	
0.30	
0.35	Table B-3 to B-7 (Asia), Revised 1996 IPCC Guidelines
1.72	
0.30	
0.02	
	1.58 3.90 0.30 0.35 1.72 0.30

Table 9: Ratio of excretion of volatile solids from livestock waste

Table 10: Maximum methane producing capacity for manure produced by animal type

Animal	Value (m³/kg of VS)	Data source
Dairy Cows	0.13	
Non-Dairy Cow	0.1	Table B-3 to B-5 (Asia), Revised 1996 IPCC Guidelines
Buffalo	0.1	Nevised 1350 FCC Guidelines
Sheep	0.13	
Goats	0.13	Table B-7 (developing countries), Revised 1996 IPCC Guidelines
Horses	0.26	
Swine	0.29	Table B-6 (Asia), Revised 1996 IPCC Guidelines
Poultry	0.24	Table B-7 (developing countries), Revised 1996 IPCC Guidelines

The default value of methane conversion factors (MCF) for each manure management system were taken from GPG 2000 and expert judgement (Table 11).

	Climate re	gion	
AWMS	15 – 25°C	>25°C	Data source
Composting	1%	1.5%	
Aerobic Treatment	0.1%	0.1%	Table 4.11 – GPG 2000
Poultry manure with bedding	1.5%	1.5%	
Anaerobic lagoon	12.5%	12.5%	Expert judgement
Pasture/Range/ Paddock	1.5%	2.0%	Table 4.10 – GPG 2000

Table 11. Mediane conversion factors (Mer / for cach manare management system	Table 11: Methane conversion	factors (MCF)	F) for each manure management	system
---	------------------------------	---------------	-------------------------------	--------

Table 12: Management of livestock waste at household level in each climate zone

	Manure management system (%) – Report from DLP/MARD								
	Total	Composting	Spread out	Anaerobic lagoon	Poultry/cattle manure with bedding	Others			
Region	Manure management system (%) – GPG 2000								
	Total	Composting	Aerobic Treatment	Anaerobic lagoon	Poultry manure with bedding	Pasture range and paddock (grazing)			
Total	100	55	26	10	5	4			
North	100	61.85	23.11	8.25	2.97	3.82			
South	100	29.96	36.56	16.39	12.43	4.66			

Table 13: Emissions factors for dairy cows, non-dairy cattle, buffalo and swine in each manure management system in different climate regions

Animal	Greenhouse gas inv agriculture secto	•	Source	
	15 – 25°C	>25°C		
Dairy Cows	1.59	2.52		
Non-Dairy Cattle	0.69	1.09	Calculated based on VS, BO, MCF and N	
Buffalo	1.69	2.68		
Swine	0.38	0.60		

Unit: kg/animal

			Unit: kg/animal	
A sector of	Climate region		C	
Animal	15 – 25°C	> 25°C	Source	
Sheep	0.16	0.21		
Goats	0.17	0.22	Table D. Z. manual 4.47. Device of 1000 IDCC Cuidalines	
Horses	1.64	2.18	Table B-7, page 4.47. Revised 1996 IPCC Guide	
Poultry	0.02	0.02		

Table 14: Emissions factors for sheep, goats, horses, poultry in each manure management system in different climate regions

3.1.2.2. N₂O emissions from manure management

a) Methodology

According to the revised IPCC GL1996, the amount of GHG emissions from manure management is calculated based on the following equation:

$$(N_2O-N)_{(mm)} = \sum_{(S)} \{ [\sum_{(T)} (N_{(T)*}N_{ex(T)*}MS_{(T,S)})] * EF_{3(S)} \}$$

Where:

 $(N_2O-N)_{(mm)}$ = direct N_2O-N emissions from manure management from all Animal Waste Management Systems (AWMS) in the country (kg N₂O-N/year)

 $N_{(T)}$ = number of animals of type T in the country

 $N_{ex(T)} = N$ excretion per year per animal (kg N/yr)

 $\text{MS}_{_{(T,S)}})$ = fraction of $N_{_{\text{ex}(T)}}$ that is managed in one of the

Table 15: N-excretion rate per animal

different animal waste management systems for animals of type T in the country

 $EF_{3(S)} = N_2O$ emissions factor for an AWMS (kg N₂O-N/kg of N_{ex} in AWMS).

S = Animal waste management systems

T= Animal type.

Kg N_2O-N are converted to kg N_2O by multiplying by.

b) Activity data

The activity data to estimate N_2O emissions from manure management is presented in Table 8.

c) Emissions factors

The emissions factors to estimate N_2O emissions from manure management are presented in Table 15.

Unit: kg N/animal/year

Animal	N-excretion	Data source
Dairy Cows	60	
Non-Dairy Cattle	40	
Poultry	0.6	Table B-1
Sheep	12	Revised 1996 IPCC Guidelines
Swine	16	
Other animals	40	

Table 16: N₂O emissions factor for each AWMS

Unit: kg N₂O– N/kg N

AWMS	$N_{2}O$ emissions factor for each AWMS	Data source
Poultry manure with bedding	0.02	
Aerobic treatment	0.02	GPG 2000
Composting	0.02	GPG 2000
Anaerobic lagoons	0.001	(Tables 4.12, 4.13)
Pasture range and paddock (grazing)	-	

3.1.3. Rice cultivation $(CH_4) - (4C)$

a) Methodology

According to the revised IPCC GL1996, the amount of GHG emissions from rice cultivation is calculated based on the following equation:

Emissions from Rice production (Tg/yr) = $\sum_{i}\sum_{k} k(EFijk x Aijk x 10^{-12})$

Where:

EFijk = a seasonally integrated emissions factor for *i*, *j*, and *k* conditions, in g CH_a/m^2

Aijk = annual harvested area for i, j, and k conditions, in m²/ yr

i, j, and k = represent different ecosystems, water management regimes, and other conditions under which CH_4 emissions from rice may vary (e.g. addition of organic amendments)

b) Activity data

The activity data to estimate CH_4 emissions from rice cultivation are presented in Table 17.

						Unit: hectare
	Northern region	C e n t r a l region	Southern region	Total	Source	Water management in IPCC
Planted area	1,811,900	1,481,600	4,522,700	7,816,200	Statistical Yearbook 2014	
1. Irrigated rice area	1,692,880	1,322,775	4,453,919	7,469,574	MARD (2014)	
1.1. Area with active water management	1,466,100	1,175,800	2,475,700	5,117,600	National Institute of Agricultural Planning and Projection (2014)	
1.1.1 Partial AWD	164,812	29,488	50,964	245,264		Intermittently flooded – Single Aeration
1.1.2 Full AWD	36,692	4,818	8,616	52,126	Assumptions are unchanged from 2013. Data are from Department of Water Resources – MARD	Intermittently Flooded – Multiple Aeration
1.1.3 Continuously flooded area	1,262,596	1,141,494	2,416,120	4,820,210	(1.1) - (1.1.1) - (1.1.2)	Continuously Flooded
1.2. 1.1. Area without water management	226,780	146,975	1,978,219	2,351,974 (1) - (1.1)	(1) - (1.1)	Intermittently flooded – Single Aeration
2. Upland rice	30,000	24,000	68,000	122,000	Assumptions are unchanged from 2010	Upland rice
3. Rain-fed rice	89,020	134,825	781	224,626	Total planted rice area - (1) – (2)	Rain-fed rice

Table 17: Rice production area in Vietnam

Table 18: Rice ecosystems under different water management regimes in Vietnam

				Unit: hectare
Water regime	Northern region	Central region	Southern region	Total
Continuously flooded	1,262,596	1,141,494	2,416,120	4,820,210
Intermittently flooded – Single Aeration	391,592	176,363	2,029,183	2,597,238
Intermittently Flooded – Multiple Aeration	38,692	4,818	8,616	52,126
Upland rice	30,000	24,000	68,000	122,000
Rain-fed rice	89,020	134,825	781	224,626
Total	1,811,900	1,481,600	4,522,700	7,816,200

c) Emissions factors

Emissions and scaling factors for rice fields are taken from the revised IPCC 1996 Guidelines for upland rice and for different water regimes as shown in Table 19.

Table 19: CH_4 emissions scaling factors for rice ecosystems and water management regimes relative to continuously flooded fields (without organic amendments)

Category		Water management regime	Scaling Factor (SF _w)
Upland		None	0
		Continuously Flooded	1.0
Lowland	Irrigated	Intermittently flooded – Single Aeration	0.5 (0.2-0.7)
		Intermittently flooded – Multiple Aeration	0.2 (0.1-0.3)
	Rain-fed	Flood prone	0.8 (0.5-1.0)
		Drought prone	0.4 (0-0.5)
		Water depth 5-10 cm	0.8 (0.6-1.0)
	Deep water —	Water depth >100cm	0.6 (0.5-0.8)
		Source: IPCC Guidelines	Poforonco Manual Table 1-12

Source: IPCC Guidelines, Reference Manual, Table 4-12.

Table 20: CH₄ emissions factors for continuously flooded regimes

Unit: g/m²

Continuously flooded regime	EF	Data source
Northern region	37.50	
Central region	33.59	Research Centre for Climate Change and Sustainable Development
Southern region	21.72	

Category		Water management regime	Scaling Factor (SF _w)
Upland		None	0
		Continuously Flooded	1.0
	Irrigated	Intermittently flooded – Single Aeration	0.5 (0.2-0.7)
Lowland		Intermittently Flooded – Multiple Aeration	0.2 (0.1-0.3)
		Flood prone	0.8 (0.5-1.0)
	Rain-fed	Drought prone	0.4 (0-0.5)
	-	Water depth 5-10 cm	0.8 (0.6-1.0)
	Deep water	Water depth >100cm	0.6 (0.5-0.8)
		Source: IPCC Guidelines, I	Reference Manual, Table 4-12

Table 21: CH_4 emissions scaling factors for rice ecosystems and water management regimes relative to continuously flooded fields (without organic amendments)

3.1.4. Agricultural soil (N₂O) - (4D)

a) Methodology

» Direct N₂O-N emissions from agricultural soil (Tier 1a)

According to the revised IPCC GL1996, the direct N_2 O-N emissions from agricultural soil are calculated based on the following equation:

$$N_2O_{\text{Direct}} - N = [(F_{SN} + F_{AW} + F_{BN} + F_{CR}) + (F_{OS} + EF_2)]$$

Where:

 $N_{2}O_{\rm Direct}$ –N= annual direct $N_{2}O$ emissions per unit of nitrogen

 $F_{_{SN}}$ = annual amount of synthetic nitrogen fertiliser applied to soils after adjusting for the amount that volatilises (kg)

 F_{AW} = the total amount of animal manure nitrogen applied to soils from waste management systems (other than pasture range and paddock) after adjusting for the amount which volatilises (kg)

 $\mathsf{F}_{_{\mathsf{BN}}}$ = total amount of nitrogen returned to soils from nitrogen-fixing crops

 F_{CR} = total amount of nitrogen returned to soils from crop residues

 $\mathsf{F}_{\rm os}$ = area (hectares) of organic soils which are cultivated annually

 EF_{1} = emissions factor for direct emissions from N inputs to soil

 EF_2 = emissions factor for direct emissions from organic soil mineralisation due to cultivation

» Direct emissions from manure deposited during grazing

According to the revised IPCC GL1996, the direct N_2O-N emissions from agricultural soil are calculated based on the following equation:

$$(N_2O-N)(mm) = \sum_{(S)} \{ \sum_{(T)} (N_{(T)} * N_{ex(T)} * MS_{(T,S)}) \} * EF_{3(S)} \}$$

Where:

 $N_{(T)}$ = population of animal (T)

 $N_{ex(T)}$ = nitrogen excreted in urine and faeces (dung) as previously determined in the nitrogen excretion for each livestock species (kg N per year)

 $MS_{(T,S)}$) = fraction of total annual excretion in the pasture range and paddock manure management system

 $EF_{_{3(S)}}$ = emissions factor for nitrous oxide from urine and faeces (dung) from Animal Waste Management System (AWMS)

S = Animal Waste Management System (AWMS)

T= animal type.

Indirect N emissions are emitted from: 1) fraction of N₂O produced from atmospheric deposition; 2) from nitrogen volatilisation from soils + associated with nitrogen leached from soils; 3) N₂O from the discharge of human wastewater.

According to the revised GL 1996, the general equation for calculating N_2O emissions from all of these sources is:

 $N_2O_{(G)} - N = [(N_{FERRT} * Frac_{GASF}) + \sum_{(T)} (N_{(T)} * Nex_{(T)}) * Frac_{GASM}] * EF_4$

Where:

 $\rm N_2O_{(G)}$ = fraction of $\rm N_2O$ produced from atmospheric deposition

N_{FERRT} = amount of nitrogen fertiliser applied to soils (kgN/ yr)

Table 22: Crop production in 2014

 $\sum_{(T)} (N_{(T)} * N_{ex(T)})$ = total N excreted from animal waste, kg N/ year

 $Frac_{GASF}$ = fraction of total synthetic fertiliser emitted as NO_x or NH₃; Default value: 0.1 kg NH₃ -N + N_{ox}-N/kg N

 $Frac_{GASM}$ = fraction of total animal manure emitted as NO_x or NH₃; default value: 0.2 kg NH₃ -N + N_{ox}-N/kg N

 EF_4 = indirect emissions from nitrogen volatilisation; 0.2 kg $NH_3 - N + N_{ox} - N/kg N$

 EF_5 = proportion of nitrogen input that contributes to indirect emissions from nitrogen leaching

b) Activity data

The activity data for calculation of N_2O emissions from agricultural soils is presented in Table 22.

Unit: 1000 tons

Data source	Production	Nitrogen fixation	Crop
Statistical Yearbook - GSO	5,202.30		Maize
Statistical Yearbook - GSO	44,974.60		Rice
FAOSTAT	1.80		Millet
Statistical Yearbook - GSO	156.50	×	Soybean
FAOSTAT	321.70		Potato
Statistical Yearbook - GSO	1,401.10		Sweet potato
Statistical Yearbook - GSO	10,209.90		Cassava
Statistical Yearbook - GSO	19,821.60		Sugarcane
Statistical Yearbook - GSO	453.30	×	Groundnut
FAOSTAT	164.04	×	Beans
Statistical Yearbook - GSO	2.90		Cotton
Statistical Yearbook - GSO	0.97		Jute
Statistical Yearbook - GSO	87.07		Sedge
Statistical Yearbook - GSO	34.75		Sesame
Statistical Yearbook - GSO	56.50		Tobacco

Table 23: Total amount of Nitrogen fertilizer consumption 2014 (N_{FERT})

Amount	Data source	
1,425,124.630	(FAOSTAT) (http://www.fao.org/faostat)	

3.1.5. Burning of savannah ($CH_4 N_2O$, NO_x , CO, NMVOC) - (4E)

a) Methodology

According to the revised IPCC GL1996, the amount of GHG emissions from burning savannah is calculated based on the following steps:

Step 1.

Biomass burned (Gg dm) = area of tussock burned annually × above-ground biomass density (t.dm/ha) × fraction actually burned

Step 2.

C released biomass (Gg C) = live biomass burned (t.dm) \times ratio of C loss to above-ground biomass \times fraction that is live biomass × fraction oxidised

Step 3.

C released biomass (Gg C) = dead biomass burned (t.dm) × ratio of C loss to above-ground biomass × fraction that is dead biomass × fraction oxidised

Table 24: Area of the burned savannah in 2014

Step 4.

Total carbon released is then used to estimate CH₄, CO, N₂O and NO₂ emissions

 N_2O emissions (Gg N_2O) = C released biomass (Gg C) × ratio of N: C loss \times N₂O emissions factor \times 44/28

NO, emissions = total C released × C released biomass (Gg C) \times Ratio of N: C loss \times NO, emissions factor \times 46/14

 CH_{4} emissions = total C released × CH_{4} emissions factor × 16/12

CO emissions = total C released \times CO emissions factor \times 28/12

b) Activity data

The activity data for estimating GHG emissions from burning savannah is presented in Table 24.

c) Emissions factors

The emissions factors for calculating GHG emissions from burning savannah in Vietnam are presented in Table 25.

Unit: 1000 ha

Туре	2014
Pasture	1.33
Savannah	0.38

Table 25: Emissions factors used to estimate emissions from burning savannah in Vietnam

Gas	Emissions factor	Data source
CH_4	0.004	
CO	0.06	
N ₂ O	0.007	Revised 1996 IPCC Guidelines, page 4.80
NOx	0.121	

3.1.6. Field burning of agricultural residues (CH_{λ} , N₂O, NOx, CO, NMVOC) – (4F)

a) Methodology

According to the revised IPCC GL1996, the amount of GHG emissions from field burning of agricultural residues is calculated based on the following equation:

Total carbon released (tons of carbon) = all crop types Σ annual production (tons of biomass per year) x the ratio of residue to crop product (fraction) x the average dry matter fraction of residue (tons of dry matter/ tons of biomass) x the fraction actually burned in the field x the fraction oxidised x the carbon fraction (tons of carbon/ tons of dry matter)

Where:

Annual dry matter production (t dm) = total crop production (t) \times dry matter fraction

Above-ground dry matter residue (t dm) = (annual dry matter production (t dm)/crop-specific Harvest index) - dry matter production (t dm)

Biomass burned (Gg) = above-ground dry matter residue (t dm) \times area burned as a proportion of total production area \times proportion of residue remaining after any removal \times proportion of remaining residue actually burned/1000

Total biomass burned is then used to estimate N_2O , NO_x , CH_4 , and CO:

 N_2O = biomass burned (Gg) × fraction oxidised × fraction of N in biomass × N_2O emissions factor × 44/28

 NO_x = biomass burned (Gg) × fraction oxidised × fraction of N in biomass × NO_x emissions factor × 44/28

 CH_4 = biomass burned (Gg) × fraction oxidised × fraction of C in biomass × CH_4 emissions factor × 16/12

CO = biomass burned (Gg) × fraction oxidised × fraction of C in biomass × CO emissions factor × 16/12

b) Activity data

The activity data for calculation of GHG emissions from field burning of agricultural residues is presented in Table 22.

c) Emissions factors

The emissions factors for calculation of GHG emissions from field burning of agricultural residues is presented in Table 26, Table 27, Table 28, Table 29, Table 30 and Table 31.

Table 26: Crop residue ratio as compared with crop output

Сгор	Residue / Crop output Ratio	Data source
Maize	1	
Rice	1.4	
Millet	1.4	Table 4-16, GPG 2000
Soybean	2.1	
Potato	0.4	
Sweet potato	0.4	
Cassava	0.4	Same value as Potato
Sugarcane	0.2	Table 4-17, Revised 1996 IPCC Guidelines
Groundnut	1	
Beans	2.1	Table 4-16, GPG 2000
Cotton	2.76	
Jute	2	The ratios of cotton and jute residues were derived from FAO (1998). The ratio of
Sedge	1	sesame, sedge and tobacco residues were taken as recommended by the IPCC
Sesame	2.1	GPG 2000 - Chapter 4 – Agriculture, page 457
Tobacco	1	

Table 27: Dry matter fraction of crops

Сгор	Dry matter fraction	Data source
Maize	0.78	
Rice	0.85	
Millet	0.885	Mean value of ranges in Table 4-6, GPG 2000
Soybean	0.865	
Potato	0.45	Mean value of ranges in Table 4-17, Revised 1996 IPCC Guidelines
Sweet potato	0.45	Value for potato
Cassava	0.45	Value for potato
Sugarcane	0.15	Mean value of ranges in Table 4-17, Revised 1996 IPCC Guidelines
Groundnut	0.86	Mean value of ranges in Table 4-6, GPG 2000
Beans	0.86	Mean value of ranges in Table 4-6, GPG 2000
Cotton	0.93	US Greenhouse Gas Inventory Report 1990-2014 (2004)
Jute	0.86	Bangladesh Climate Change Report (2010)
Sedge	0.85	Value of rice
Sesame	0.87	Value of tobacco
Tobacco	0.87	US Greenhouse Gas Inventory Report 1990-2014 (2004)

Table 28: Field burning ratios

Сгор	Ratio	Data source			
Maize	0.3	Expert estimate from developing SN			
Rice	0.55	Expert estimate from developing SNC			
Millet	0.25				
Soybean	0.25	Revised 1996 IPCC Guidelines, page 4.83			
Potato	0.25				
Sweet potato	0.1	Expert estimate from developing SNC			
Cassava	0.45	Expert estimate from developing SNG			
Sugarcane	0.35	Expert estimate from developing SN			
Groundnut	0.6	Expert estimate from developing SNC			
Beans	0.35				
Cotton	0.25				
Jute	0.25				
Sedge	0.25	Revised 1996 IPCC Guidelines, page 4.83			
Sesame	0.25				
Tobacco	0.25				

Сгор	Value	Data source
Maize	0.4709	Table-16, GPG 2000
Rice	0.4144	Table-16, GPG 2000
Millet	0.5	Revised 1996 IPCC Guidelines, page 4.30
Soybean	0.5	Revised 1996 IPCC Guidelines, page 4.30
Potato	0.4226	Table-16, GPG2000
Sweet potato	0.4226	Default value for tomato used
Cassava	0.5	Revised 1996 IPCC Guidelines page 4.30
Sugarcane	0.4235	Table-16, GPG2000
Groundnut	0.5	Revised 1996 IPCC Guidelines, page 4.30
Beans	0.5	Revised 1996 IPCC Guidelines, page 4.30
Cotton	0.45	
Jute	0.45	
Sedge	0.45	Revised 1996 IPCC Guidelines, page 4.82; Global value
Sesame	0.45	
Tobacco	0.45	

Table 29: Carbon fraction in crop residues

Table 30: Nitrogen fraction in crop residues

Crop	Value	Data source
Maize	0.008	Le Van Can (1975)
Rice	0.004	Le Van Can (1975)
Millet	0.007	GPG 2000, Table 4.16
Soybean	0.010	Soybean residue (Fertilizer Handbook, Institute for Soils and Fertilizers 2009) and stem, leaf, shell, empty seed in mature soybean (Cao Ky Son, 2002)
Potato	0.003	Le Van Can (1975)
Sweet potato	0.003	Same as potato
Cassava	0.016	Mean value of mature cassava (Fertilizer Handbook, Institute for Soils and Fertilizers, 2005) cited by Cours (1951-1953) and mature cassava (Asher et al., 1980)
Sugarcane	0.004	GPG, Table 4.16
Groundnut	0.019	Average value for mature peanut leaf (Wang Zaixu, 1982; Cai Changbei, 1988) and stem (Wang Zaixu 1982; Cai Changbei, 1988) and stem, leaf, shell, empty seed in mature peanut (Cao Ky Son, 2002)
Beans	0.010	Used soybean value
Cotton	0.00675	
Jute	0.00675	
Sedge	0.00675	Estimated from N/C from residue. Value of N/C in residue is taken from global data
Sesame	0.00675	(Global value) (page 4.83 – IPCC 1996)
Tobacco	0.00675	

Compound	Ratios	Data source		
Compound	Ratios			
CH4	0.005			
со	0.06	Revised 1996 IPCC Guidelines (Volume 3); page 4		
N ₂ O	0.007			
NOx	0.121			

Table 31: Emissions ratios for agricultural residue burning calculations

3.2. Results

3.2.1. Greenhouse gas emissions from agricultural sub-sectors in 2014

a) CH_4 from enteric fermentation

The results of methane emissions from enteric fermentation in 2014 are presented in Table 32.

Table 32: Emissions of CH_4 from enteric fermentation in 2014

Animal type	Emissions (Gg CH_4)	Emissions (Gg CO ₂ e)
Dairy Cows	12.75	318.64
Non-Dairy Cattle	220.29	5,507.37
Buffalo	138.68	3,466.93
Sheep	0.34	8.57
Goats	8.00	200.04
Horses	1.20	30.01
Swine	26.76	669.04
Poultry	0.00	0.00
Total	408.02	10,200.59

b) GHG emissions from manure management

The results of methane emissions from manure management in 2014 are presented in Table 33.

	Climate r (15 – 2!	•	Climate region > 25°C		Total	
Animal –	Emissions (GgCH ₄)			Emissions (GgCO ₂ e)	Emissions (GgCH₄)	Emissions (Gg CO ₂ e)
Dairy Cows	0.14	3.62	0.34	8.61	0.49	12.23
Non-Dairy Cattle	2.00	50.03	2.27	56.77	4.27	106.80
Buffalo	3.83	95.79	0.69	17.30	4.52	113.08
Sheep	0.001	0.02	0.01	0.34	0.01	0.36
Goats	0.17	4.28	0.13	3.26	0.30	7.54
Horses	0.11	2.72	0.001	0.02	0.11	2.74
Swine	6.85	171.37	5.15	128.84	12.01	300.21
Poultry	3.85	96.30	2.62	65.38	6.47	161.68
Total	16.97	424.13	11.22	280.52	28.19	704.65

Table 33: CH_4 emissions from livestock manure management in 2014

The results of N_2O emissions from manure management in 2014 are presented in Table 34.

Table 34: N₂O emissions for each AWMS in 2014

AWMS	Emissions (Gg N ₂ O/year)	Emissions (Gg CO ₂ /year)
Anaerobic lagoons	1.58	471.60
Aerobic treatment	8.23	2.452.34
Daily spread	17.41	5.187.64
Anaerobic lagoons/tank	0.16	47.16
Pasture range and paddock (grazing)		Reported in Agricultural Soils
Total	27.38	8.158.74

c) Rice cultivation (CH₄) – (4C)

The results of methane emissions from rice cultivation in 2014 are presented in Table 35.

Table 35: CH₄ emissions from irrigated rice cultivation in 2014

Water management	Emissions (Gg CH ₄ /year)	Emissions (Gg CO ₂ /year)
Irrigated rice	1,708.7	42,717.8
Rain-fed rice	63.1	1,576.8
Total	1,771.8	44,294.6

d) Agricultural soil $(N_2O) - (4D)$

The results of N₂O emissions from agricultural soil in 2014 are presented in Table 36, Table 37 and Table 38.

Table 36: Direct N₂O-N emissions from agricultural soils in 2014

N source applied to soils	Direct N_2O-N emissions from agricultural soil (Gg N_2O-N/yr)	Total direct N_2O emissions (Gg N_2O)	Total direct N ₂ O emissions (Gg CO ₂)
Synthetic fertilizer nitrogen (FSN)	16.03	25.19	7,507.86
Animal waste (FAW)	8.81	13.85	4,126.53
Nitrogen-fixing crops (FBN)	0.25	0.40	117.80
Crop residue (FCR)	3.57	5.61	1,671.31
Organic soils (FOS)	0.004	0.01	1.9
Total	28.67	45.05	13,425.4

Table 37: Direct emissions from manure deposited during grazing in 2014

	Emissions from grazing animals		
N ₂ O-N emissions Nex(kg N/yr)	Gg N ₂ O	Gg CO ₂ e	
40,283,411.20	1.27	377.28	

Table 38: Indirect N emissions from 1) fraction of N_2O produced from atmospheric deposition; 2) from nitrogen volatilisation from soils + associated with nitrogen leached from soils; 3) N_2O from the discharge of human wastewater in 2014

E mining annual		Indirect N ₂ O emissions
Emission source	Gg N ₂ O	Gg CO ₂ e
Atmospheric deposition	5.40	1,610.57
Volatilisation from soils + leaching from soils	28.67	5,435.99
Total	34.07	7,046.56

e) Burning of savannah (CH₄, N_2 O, NO_x, CO, NMVOC) – (4E)

The GHG emissions from burning of savannah in 2014 are presented in Table 39.

Table 39: GHG emissions from burning savannah in Vietnam in 2014

Gas	Emissions (Gg)	Emissions (Gg CO ₂ e)
CH ₄	0.04	0.88
СО	0.92	-
N ₂ O	0.004	0.13
NOx	0.02	-

3.2.2. Greenhouse gas inventory of the agriculture sector in 2014

Based on the calculated results, GHG emissions from the agriculture sector in 2014 are shown in Table 40.

Table 40: GHG emissions from the agriculture sector in 2014

			Unit: ktCO ₂ e
GHG emission source	CH_4	N ₂ O	Total
4A Enteric Fermentation (CH_4)	10,200.6	0.0	10,200.6
4B Manure Management (CH ₄)	704.6	8,158.7	8,863.4
4B Manure Management (N ₂ O)	44,294.6	0.0	44,294.6
4C Rice Cultivation - Flooded Rice Fields	0.0	23,955.5	23,955.5
4D Agricultural Soils	0.9	0.1	1.0
4E Field Burning of Agricultural Residues	2,013.6	423.1	2,436.7
Total	57,214.3	32,537.5	89,751.8

04. Development of the business-asusual scenario for the agriculture sector in the period 2020-2030

4.1. Methodology, Input Data and Assumptions

4.1.1. Methodology

Business-as-usual (BAU) emissions from agriculture and its sub-sectors were calculated starting from 2000 and projecting for the future years 2010, 2020 and 2030 assuming that no policies for mitigation are implemented, taking into account only conventional production in 2010, and following existing government plans to make projections for 2020 and 2030. However, the plans for 2020 with a vision to 2030 are quite far from reality and need to be adjusted; for example, rice cultivation area is planned to reach about 7 million ha in 2020 and 6.8 million ha in

2030, but in fact, rice cultivation area has increased to about 7.7 million ha in 2019 and may stabilize at that level in 2020.

Similar to the GHG inventory in 2014, the projection of GHG emissions from agriculture in 2020 and 2030 was also implemented applying the revised 1996 IPCC Guidelines. Further plans and policies as well as trends in production scale and technology were considered. Official data and national statistics provided by state agencies are used as operational data. For most categories, the study used default values in accordance with the IPCC Guidelines. National emissions factors were also used if available.

4.1.2. Input data and assumption

The emissions factors for estimating GHG emissions from the agriculture sector in 2020 and 2030 were the same as those used for calculating GHG emissions from the agriculture sector in 2014, as presented in Section

The projection for activity data used for estimating GHG emissions from the agriculture sector in 2020 and 2030 is presented in the following sections.

a) Livestock

The projection for livestock population in different climate regions in 2020 and in 2030 and the legal bases for these assumptions are presented in Table 41 and Table 42, respectively.

b) Rice cultivation

The projection for rice cultivation in different regions in 2020 and in 2030 and the legal bases for the projections are presented in Table 43 and Table 44, respectively.

Animal	Unit	Temperate	Humid	Data source
Dairy cows	head	200,000	300,000	
Non-dairy cows	head	6,600,000	4,900,000	Decision No. 124 / QD-TTg dated 2 December 2012 of the Prime Minister
Buffalos	head	2,700,000	300,000	of the Prime Minister
Sheep	head	1,000	27,800	Decision No. 10-2008-QD-TTg dated 16 January
Goats	head	2,400,000	1,471,200	2008 of the Prime Minister
Horses	head	66,000	678	Assuming that the number of horses in 2020, 2030 is unchanged from 2014
Pigs	head	23,000,000	11,000,000	_ Decision No. 124 / QD-TTg dated 2 December 2012
Poultry	head	250,000,000	130,000,000	of the Prime Minister

Table 41: Projection for livestock population in different climate regions in 2020

Table 42: Projection for livestock population in different climate regions in 2030

Animal	Unit	Temperate	Humid	Data source
		•		
Dairy cows	head	320,000	480,000	
Non-dairy cows	head	8,000,000	6,000,000	Decision No. 124 / QD-TTg dated 2 December 2012 of the Prime Minister
Buffalos	head	2,700,000	300,000	
Sheep	head	1,000	32,200	Decision No. 10-2008-QD-TTg dated 16 January
Goats	head	2,800,000	1,666,800	2008 of the Prime Minister
Horses	head	26.500.000	12.500.000	Assuming that the number of horses in 2020,
	neau	20,500,000	12,500,000	2030 is unchanged from 2014
Pigs	head	288,000,000	152,000,000	Decision No. 124 / QD-TTg dated 2 December
Poultry	head	280,000,000	160,000,000	2012 of the Prime Minister

Table 43: Projection for rice cultivation in different regions in 2020

	Northern region	Central region	Southern region	Total	Source	Water management in IPCC
Cultivated paddy area	1,768,000	1,455,000	3,789,000	7,012,000	Decision No. 124 / QD- TTg dated 2 December 2012	
1. Irrigated area	1,668,000	1,313,000	3,719,000	6,700,000	Decision No. 124 / QD- TTg dated 2 December 2012	
1.1. Irrigated rice area with active water management	1,466,100	1,175,800	2,475,700	5,117,600	Assuming that data are unchanged from 2014. The 2014 data are cited from the Agricultural, Forestry and Fishery Statistics of the National Institute of Agricultural Planning and Statistics. Data provided by the GSO to DCC	
1.1.1 Partial AWD	164,812	29,488	50,964	245,264	Assuming that data are unchanged from 2013.	Intermittently flooded – Single Aeration
1.1.2 Full AWD	38,692	4,818	8,616	52,126	Data are cited from the Department of Water Resources	Intermittently Flooded – Multiple Aeration
1.1.3 The continuously flooded area	1,262,596	1,141,494	2,416,120	4,820,210	(1.1) - (1.1.1) - (1.1.2)	Continuously Floodec
1.2. Irrigated rice area without active water management	201,900	137,200	1,243,300	1,582,400	(1) - (1.1)	Intermittently floodec – Single Aeration
2. Upland/hill rice	30,000	24,000	68,000	122,000	Assuming that data are unchanged from 2010	Upland rice (no emission)
3. Rain-fed rice	70,000	118,000	2,000	190,000	(1) - (2)	Rain-fed rice

Table 44: Projection for rice cultivation in different regions in 2030

						Unit: hectare
	Northern region	Central region	Southern region	Total	Source	Water management in IPCC
Cultivated paddy area	1,749,000	1,419,000	3,844,000	7,012,000	Decision No. 124 / QD-TTg dated 2 December 2012	
1. Irrigated area	1,693,000	1,333,000	3,774,000	6,800,000	Decision No. 124 / QD-TTg dated 2 December 2012	
1.1. Irrigated rice area with active water management	1,466,100	1,175,800	2,475,700	5,117,600	Assuming that data are unchanged from 2014. The 2014 data are cited from the Agricultural, Forestry and Fishery Statistics of the National Institute of Agricultural Planning and Statistics. Data provided by the General Statistics Office to the DCC	
1.1.1 Partial AWD	164,812	29,488	50,964	245,264	Assuming that data are unchanged from 2013. Data are cited from the Department of Water Resources	Intermittently flooded – Single Aeration
1.1.2 Full AWD	38,692	4,818	8,616	52,126		Intermittently Flooded – Multiple Aeration
1.1.3 The continuously flooded area	1,262,596	1,141,494	2,416,120	4,820,210	(1.1) - (1.1.1) - (1.1.2)	Continuously Flooded
1.2. Irrigated rice area without active water management	226,900	157,200	1,298,300	1,682,400	(1) - (1.1)	Intermittently flooded – Single Aeration
2. Upland/hill rice	30,000	24,000	68,000	122,000	Assuming that data are unchanged from 2010	Upland rice (no emission)
3. Rain-fed rice	26,000	62,000	2,000	90,000	(1) - (2)	Rain-fed rice

The projection for rice ecosystems under water management regimes in 2020 and 2030 are presented in Table 45 and Table 46.

Table 45: Projection for rice ecosystems under water management regimes in 2020

			Unit: hectare
Northern region	Central region	Southern region	Total
1,262,596	1,141,494	2,416,120	4,820,210
366,712	166,688	1,294,264	1,827,664
38,692	4,818	8,616	52,126
30,000	24,000	68,000	122,000
70,000	118,000	2,000	190,000
1,768,000	1,455,000	3,789,000	7,012,000
	1,262,596 366,712 38,692 30,000 70,000	1,262,596 1,141,494 366,712 166,688 38,692 4,818 30,000 24,000 70,000 118,000	1,262,596 1,141,494 2,416,120 366,712 166,688 1,294,264 38,692 4,818 8,616 30,000 24,000 68,000 70,000 118,000 2,000

Table 46: Projection for rice ecosystems under water management regimes in 2030

Unit: hectare

Water management regime	Northern region	Central region	Southern region	Total
Continuously Flooded	1,262,596	1,141,494	2,416,120	4,820,210
Intermittently flooded – Single Aeration	391,712	186,688	1,349,264	1,927,664
Intermittently flooded-Multiple Aeration	38,692	4,818	8,616	52,126
Upland/hilly rice	30,000	24,000	68,000	122,000
Rain-fed rice	26,000	62,000	2,000	90,000
Total	1,749,000	1,419,000	3,844,000	7,012,000

c) Agricultural soil

The projections for the amount of nitrogen fertilizer consumption in 2020 and 2030 are presented in Table 47 and Table 48, respectively.

Table 47: Projections for the amount of nitrogen fertilizer consumption in 2020 and 2030

		Unit: N _{FERT} - tons
2020	2030	Data source
1,370,929,000	1,400,949,000	Multiplying the amount of fertilizer per hectare in 2020 and 2030 with total area. The adjustment factor is 1.05 for increases of yield in 2020 and 2030 compared with 2013.

Table 48: Projections for crop production in 2020 and 2030

Unit: 1000 tons

Сгор	Nitrogen fixation	2020	2030	Data source
Maize		7,200	8,640	
Rice		42,000	44,000	
Millet		700	900	
Soybean	*	1,750	1,750	
Potato		11,000	11,000	Decision No. 124 / QD-TTg dated 2 December
Sweet potato		24,000	28,000	2012 of the Prime Minister
Cassava		800	930	
Sugarcane		195	232	
Groundnut	*	50	50	
Beans	*	36	36	
Cotton		0.97	0.97	
Jute		87.07	87.07	
Sedge		34.75	34.75	Assuming that data are unchanged from 2014
Sesame		2	2	
Tobacco		322	322	

d) Burning savannah

The projections for area of burned savannah in 2020 and 2030 are presented in Table 49.

Table 49: Area of the burned savannah

		Unit: 1000 ha
Туре	2020	2030
Savanah-grass/pasture	1.45	1.45
Savanah-shrub	0.34	0.34

Above-ground matter/biomass: The biomass value is a national value quoted from the "Carbon stock of vegetation cover and clump vegetation: baseline for a forest carbon and forest restoration according to clean development mechanism project in Vietnam" led by Dr. Vu Tan Phuong

(Table 50). The study was conducted in Cao Phong and Lac Son districts (Hoa Binh Province) and in Ha Trung, Thach Thanh, Ngoc Lac districts (Thanh Hoa Province) in 2004 by the Research Centre of Forest Ecology in collaboration with the Japanese Forestry Consultants Association (JOFCA).

Table 50: Estimated above-ground matter/biomass

Savannah – shrub	(t/ha)
Reed - grass	20
Height from 2-3m	14
Height below 2m	10
Average	14.67
Savannah – pasture/grass plot	(t/ha)
Lophatherum gracile Brongn	6.5
Imperata cylindrica (L.) Beauv)	4.9
Lophopogon intermedius	4
Average	5.1

e) Open-field burning of crop residues

The projections for crop output in 2020 and 2030 and the legal bases for that assumption are presented in Table 48.

4.2. Results

4.2.1. BAU scenario of the agriculture sector in the period 2020-2030

Based on the calculated results and forecasting, the GHG emissions scenario of the agriculture sector to 2030 is shown in Table 51:

Table 51: BAU scenario of the agriculture sector in the period 2020-2030

							Unit: ktCO ₂ e
GHG emission source	1994	2000	2005	2010	2014	2020	2030
4A Enteric Fermentation	7,070	7,730.5	9,275.1	9,467.5	10,200.6	18,842.5	22,212.5
4B Manure Management	2,710	3,447.3	8,056.2	8,560.0	8,863.4	12,099.5	14,093.7
4C Rice Cultivation - Flooded Rice Fields	32,750	37,429.7	42,511.6	44,614.2	44,294.6	41,891.2	41,535.5
4D Agricultural Soils	8,060	14,219.7	22,282.9	23,812.0	23,955.5	29,281.5	32,195.0
4E Burning of Savanah	400	590.67	3.6	1.7	1.0	1.0	1.0
4F. Field Burning of Agricultural Residues	1,460	1,672.63	1,690.9	1,899.3	2,436.7	2,391.8	2,127.6
Total	52,450	65,090.61	83,820.4	88,354.8	89,751.8	104,507.6	112,165.4

4.2.2. Comparison with NDC1

The revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories and the GPG 2000 were also used for the development of the BAU scenario of the agriculture sector in Vietnam's INDC. The comparison between the BAU scenario in the INDC and the revised NDC is presented in Table 52.

It can be seen from Table 52 that in Vietnam's revised NDC1, according to the BAU scenario, GHG emissions in 2020 and 2030 are slightly higher than that of the NDC1. Particularly, in the revised NDC1 the forecast for GHG

emissions in 2020 is 104.5 $MtCO_2e$, which is 3.7 $MtCO_2e$ higher than that of the NDC1. In 2030, the forecast for GHG emissions is 112.1 $MtCO_2e$, which is 2.8 $MtCO_2e$ higher than that of the NDC1. GHG emissions from enteric fermentation, manure management and rice cultivation in 2020 and 2030 in the revised NDC1 are higher than that of the NDC1. However, GHG emissions from agriculture soils and burning of agricultural residues in fields in 2020 and 2030 in the revised NDC1 are slightly lower than that of the NDC1. The key reason for these differences is the change in the assumptions to develop the BAU scenario for the agriculture sector.

Table 52. Comparison between the BAU scenario in Vietnam's NDC1 and the revised NDC1

Unit: MtCO₂e 2010 2020 2030 GHG source categories NDC1 The revised NDC1 NDC1 The revised NDC1 NDC1 The revised NDC1 4A Enteric fermentation 18.0 17.9 24.9 30.8 29.3 36.2 4B Manure management 44.6 39.3 41.8 39.9 41.5 4C Rice cultivation 44.6 4D Agricultural soils 23.8 23.8 33.9 29.2 37.3 32.1 4E Prescribed burning of _ savannah 4F Burning of agricultural 1.8 1.8 2.5 2.3 2.6 2.1 residue in fields Total 88.3 88.3 100.8 104.5 109.3 112.1

05. Development of the mitigation scenario for the agriculture sector in the period 2020 - 2030

5.1. Assumptions, Methodology and Input Data

5.1.1. Methodology

The Agriculture and Land Use (ALU) software was used for the calculation of GHG mitigation options in the agriculture sector. Estimates were developed based on the BAU scenario, assuming that

new policies are developed to support GHG mitigation technologies. The GHG mitigation options were reviewed for efficiency, incremental costs, mitigation potential and co-benefits compared to the BAU scenario.

The Marginal Abatement Cost Curve for mitigation options was calculated following formula:

Marginal Abatement Cost (\$/t CO2e) = - Net Present Value (\$)

Total GHG emissions abated over the life of the project

Net Present Value =

Total project cost – Total project saving

(1 + discount rate) project lifetime

5.1.2. Input data and assumptions

In the selection of GHG mitigation options in the agriculture sector for the revised NDC1, criteria to be used for assessment include:

- » Availability of technology: Technologies are available and have been applied domestically and abroad, especially those that have been applied in practice and have high potential for scaling-up, bringing high efficiency.
- » Mitigation potential: Priority is given to high potential emissions reduction options, especially those in sectors with high emissions levels and are closely linked to specific items as set out in the Sectoral Strategy and Development Plans.

- » Economic efficiency: Selecting technology options with high economic efficiency, including low mitigation cost (USD/tCO₂eq), moderate total investment, whicg are in line with enterprises' development strategies and have fast capital recovery time.
- » *Co-benefits*: The selected mitigation options also bring co-beneits to the economy, society and environment.

So far, a number of mitigation options for GHG emissions at the country and sector levels have been proposed. Based on the above-mentioned criteria, in this study, fifteen GHG mitigation options were identified and assessed. The economic and technical parameters for each option were taken from research studies, publications and implemented projects. The assumptions for the options are presented in Table 53.

)	
Mitigation options	Period	Assumptions
A1. Alternate wetting and drying (AWD), and SRI (high adoption) for rice	2015-2030	AWD technology and improved rice cultivation will be introduced on 200,000 ha of irrigated rice cultivation in 2030 with full investment in infrastructure
A2. Mid-season drainage (for rice)	2015-2030	Mid-season drainage will be introduced to apply to 1,000,000 ha of irrigated rice cultivation in 2030
A3. Shifting double rice or triple rice into Rice-Shrimp	2015-2030	Shifting 200,000 ha double rice with low productivity to rice-shrimp farming in 2030
A4. Shifting double rice or triple rice into Upland Crops	2015-2030	Shifting 200,000 ha double rice with low productivity to upland crops cultivation in 2030
A5.1.Improving diets for dairy cows	2015-2030	Improvements to the diets of 500,000 dairy cows will help reduce methane emissions caused by the rumen fermentation process in 2030
A5.2.Improving diets for cows (for meat)	2015-2030	Improvements to the diets of 700,000 non-dairy cows will help reduce methane emissions caused by the rumen fermentation process in 2030
A5.3.Improving diets for buffalos	2021-2030	Improvements to the diets of 150,000 buffalos will help reduce methane emissions caused by the rumen fermentation process in 2030
A6.1. Reusing agricultural residues/by-products	2021-2030	Upland crop residues will be collected and processed into compost for agricultural production using 25-50% of crop residues on 18 million ha of crop cultivation areas in 2030
A6.2. Produce and apply biochar	2021-2030	Agricultural residues will be collected and processed into compost for agricultural production; for example, 50% of rice residues from 3.5 million ha of rice cultivation areas. The technology is only applicable to residues during the wet season
A7.1. Integrated Crop Management (ICM) for rice	2015-2030	Integration of numerous farming techniques that reduce and improve the use of inputs (3 reductions and 3 gains) in 2030. This option can be applied to 1 million ha of annual upland crops

Mitig	Mitigation options	suo					Å	Period								Ass	Assumptions
A7.2	A7.2. ICM for annual upland crops	nnual u	pland crc	sd(2021-2030		Integratic fertilisers fficiency. T	on of numé s and grow This option	erous farm th enhance can be app	ing techn ers, as we plied to 1	Integration of numerous farming techniques that reduce the use of inputs, such as seeds, fertilisers and growth enhancers, as well as improving productivity, quality and economic efficiency. This option can be applied to 1 million ha of annual upland crop cultivation areas	reduce th oving prov of annua	ne use of ir ductivity, c	nputs, such quality and crop cultiva	as seeds, economic tion areas
A8. 9 (NH4	A8. Substitute Urea fertilizer with Ammoniac Sulphate- (NH4) 2SO4	Urea fer	tilizer w	ith Ammo	niac Sul;	phate-	2021-2030	2030	Ū	ubstitution	ו of urea ש	ith SA fe	Substitution of urea with SA fertilisers on an area of 3.5 million ha to reduce N2O emissions	an area o	of 3.5 milli	on ha to re	duce N2O emissions
A9.1	A9.1. AWD and SRI (medium adoption)	d SRI (m	iedium a	doption)			2021-2030	2030	With i	internation irrigat	ial support ed rice cul	, AWD aı tivation a	With international support, AWD and SRI will be introduced/applied to 500,000 ha of irrigated rice cultivation area in 2030, with part investment in infrastructure	be introa 0, with pe	duced/appl	ied to 500, nent in infr	,000 ha of astructure
A9.2	A9.2. AWD and drying, and SRI (medium adoption)	d drying	, and SR	l (medium	adoptio	(u	2021-2030	2030	With i	internation	ial support irrig:	, AWD al ated rice	With international support, AWD and SRI will be introduced/applied to 500,000 ha of irrigated rice cultivation, which has basic infrastructure, in 2030	be introa , which he	duced/appl as basic in	ied to 500, frastructur	,000 ha of e, in 2030
A10.	A10. Drip irrigation combined with fertilizer for coffee	ation cor	nbined v	vith fertiliz	zer for co	offee	2021-2030	2030	With ii introduce	nternation; ed/applied	al support, to 450,000	, drip irrig 0 ha of cc	With international support, drip irrigation combined with fertilizer technologies will be introduced/applied to 450,000 ha of coffee cultivation throughout Vietnam to strengthen mitroduced/applied to a strengthen with a strengthen mitroduced/applied to 450,000 ha of coffee cultivation throughout with a strengthen mitroduced/applied to 450,000 ha of coffee cultivation throughout with a strengthen with a st	oined witl ation thro	h fertilizer ughout Vi mitiga	tilizer technologies will be out Vietnam to strengthen mitigation impacts in 2030	ies will be trengthen ts in 2030
A11. organ	A11. Improve technology to recycle livestock dung into organic fertilizer	echnolo 3r	gy to rec	ycle livest	tock dun	g into	2015-2030	2030	With inte	ernational s	support, im	ıprove ter of an	With international support, improve technologies in waste (from 20,000,000 million tons of animal waste) treatment to produce organic fertilizer	in waste) treatme	(from 20,1 ent to prod	000,000 m luce organi	illion tons c fertilizer
	Table 54:	Plan for	· implem	Table 54: Plan for implementation of options to 2030	f options	s to 203(0										
	Scale							lmpl	ementatic	Implementation plan to 2030 (1000 ha)	2030 (100	00 ha)					
	(1000 ha)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
A1	200	40	41	42	43	44	45	40.2	45.56	67	93.8	134	147.4	160.8	167.5	187.6	201
A2	1000	150	160	170	180	190	200	201	227.8	335	469	670	737	804	837.5	938	1005
A3	200	25	30	35	40	45	50	40.2	45.56	67	93.8	134	147.4	160.8	167.5	187.6	201

	Scale							lmpl	ementatio	Implementation plan to 2030 (1000 ha)	2030 (10	00 ha)					
	(1000 ha)	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
A4	200	40	41	42	43	44	45	40.2	45.56	67	93.8	134	147.4	160.8	167.5	187.6	201
A5.1	500	50	60	70	80	06	100	100.5	113.9	167.5	234.5	335	368.5	402	418.75	469	502.5
A5.2	7000	450	460	470	480	490	500	1407	1594.6	2345	3283	4690	5159	5628	5862.5	6566	7035
A5.3	1500	0	0	0	0	0	0	301.5	341.7	502.5	703.5	1005	1105.5	1206	1256.25	1407	1507.5
A6.1	1200	0	0	0	0	0	0	241.2	273.36	402	562.8	804	884.4	964.8	1005	1125.6	1206
A6.2	3500	0	0	0	0	0	0	703.5	797.3	1172.5	1641.5	2345	2579.5	2814	2931.25	3283	3517.5
A7.1	1000	40	45	50	55	60	65	201	227.8	335	469	670	737	804	837.5	938	1005
A7.2	1000	0	0	0	0	0	0	201	227.8	335	469	670	737	804	837.5	938	1005
A8	3500	0	0	0	0	0	0	703.5	797.3	1172.5	1641.5	2345	2579.5	2814	2931.25	3283	3517.5
A9.1	500	0	0	0	0	0	0	100.5	113.9	167.5	234.5	335	368.5	402	418.75	469	502.5
A9.2	1000	0	0	0	0	0	0	201	227.8	335	469	670	737	804	837.5	938	1005
A10	450	0	0	0	0	0	0	90.45	102.51	150.75	211.05	301.5	331.65	361.8	376.875	422.1	452.25
A11	40000	50	60	70	80	06	100	8040	9112	13400	18760	26800	29480	32160	33500	37520	40200

5.2. Results

5.2.1. Mitigation scenario for the agriculture sector in the period 2020-2030

a) Unconditional contribution

Unconditional mitigation options in the agriculture sector are mostly highly-feasible options, with high availability of infrastructure or technology and funding that can be allocated by Vietnam (Table 55).

b) Conditional contribution

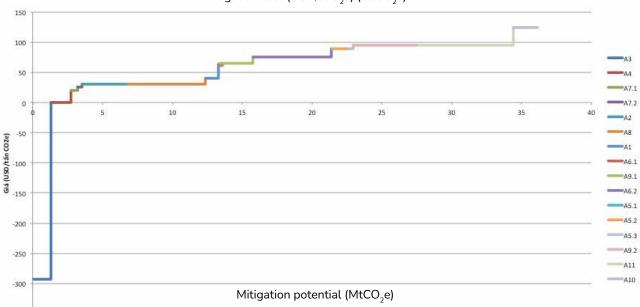
Conditional mitigation options in the agriculture sector are mostly options with higher costs that need international support in finance, technology and capacity building (Table 56).

Table 55: Unconditional mitigation options in the agriculture sector

Mitigation option	Mitigation potential rate (MtCO ₂ e per ha	Scale (1,000 ha,	Mitiga	tion potential (MtCO ₂ e)	Mitigation cost
	per year)	1,000 units) —	2030	2015-2030	(\$/t.CO ₂)
A1. AWD and SRI (high adoption/large scale)	-4.7	200	0.94	5.17	39.59
A2. Mid-season drainage in rice cultivation	-3.2	1000	3.20	17.60	30.0
A3. Shifting double rice or triple rice to Rice-Shrimp	-6.54	200	1.31	7.19	-293.20
A4. Shifting double rice or triple rice to Upland Crop	-7.14	200	1.43	7.85	-0.08
Total			6.88		
Compared with BAU 2030 (%)			6.13		

Table 56: Conditional mitigation options in the agriculture sector

Mitigation options	Mitigation potential rate	Scale (1,000 ha,	•	on potential ItCO ₂ e)	Mitigation cost (\$/t.CO ₂)
	(Mt CO ₂ e per ha per year)	1,000 units)	2030	2015-2030	
A5.1. Improvement of dairy cow diets	0.168	500	0.084	0.46	89
A5.2. Improvement of non-dairy cow diets	0.165	7000	1.16	6.35	89
A5.3. Improvement of buffalo diets	0.206	1500	0.31	1.70	89
A6.1. Reuse of upland agricultural/crop residues	0.10	1200	0.12	0.68	63.2
A6.2. Introduction of biochar (large scale)	5.37	3500	18.80	31.02	75


Mitigation options	Mitigation potential rate	Scale (1,000 ha,	-	ion potential ItCO ₂ e)	Mitigation cost (\$/t.CO ₂)
	(Mt CO ₂ e per ha per year)	1,000 units)	2030	2015-2030	
A7.1. ICM in rice cultivation	0.50	1000	0.50	2.75	20
A7.2. ICM for annual upland crops cultivation	0.32	1000	0.32	1.76	25
A8. Substitution of urea with Ammoniac sulphate fertilizer	1.60	3500	5.60	30.80	30
A9.1. AWD and SRI (infrastructure partly financed)	4.68	500	4.68	12.87	64.96
A9.2. AWD and SRI (low infrastructure)	4.68	1000	4.68	25.74	94.9
A10. Drip irrigation combined with fertilizer for coffee	3.80	450	1.71	9.40	124.18
A11.Improved technologies to recycle livestock dung as organic fertilizer	0.17	40000	6.80	37.40	94.92
Total			29.14		
Compare with BAU in 2030			25.9%		

Among the above-mentioned mitigation options, option A.5.1. on improvement of feed diet for dairy cows, cows and buffalos has low mitigation potential, but is necessary because of co-benefits, such as increasing meat and milk as well as improving the quality of meat and milk. Other options, such as management of crop residues, ICM, substituting urea with Ammoniac sulphate fertilizer, slow release nitrogen fertilizer, AWD and SRI, and drip irrigation with liquid fertilizer application require more technology and infrastructure investment; for example, better technology for producing microbial agents for making compost in the field; technology (industrial scale) to produce biochar, so more carbon can be stored in soil as carbon sequestration and changing technology for producing slow nitrogen fertilizer to mitigate N₂O emissions and N loss. Options such as producing and applying biochar to soil has high mitigation potential. Nevertheless, this option requires a lot of technological and financial support to reduce the cost of producing biochar. Integrated drip irrigation and fertilization Technology for coffee is a highly-advanced

technology with economic and adaptive water resource use. However, the investment required is very high and will grow if the system's operation is included.

c) Cost of mitigation options in the agriculture sector

Figure 1 shows the mitigation potential of each option (horizontal axis) and the cost of each technology (vertical axis). The cost is calculated based on parallel deducted input/output of mitigation production activities for conventional production activities. The chart shows that the technology for converting ineffective double rice or triple rice land into rice-shrimp has the lowest cost and the highest economic efficiency. In contrast, drip irrigation technology for coffee is the most expensive. However, this technology reduces the use of irrigation water by 40%, fertilizer by 30%, labour by 80%, and electric pump water by 60%. Therefore, this option is suitable for dry conditions; however, some co-benefits were small compared with the level of investment and some were not yet taken into account. This means the final cost for this option is still high. Option A6.2 (biochar production and application) have the highest mitigation potential; however, with this option it is difficult to choose the optimal technology or practical implementation. AWD and SRI technologies also have high mitigation potential, but the mitigation cost depends on the status of infrastructure. In the case of A1, infrastructure is fully financed and farmers just need to invest in the necessary equipment to control water; hence the cost is low. However, regarding A9.2 with low infrastructure, farmers and the community need to invest from the beginning in irrigation, drainage systems, levelling fields, water inlets/outlets and controlling system, so the investment cost will be high. The option of mid-season drainage represents both high mitigation potential and moderate costs. It also has high potential for replication and is easy to monitor/measure.

Mitigation cost (USD/tCO₂e) (MtCO₂e)

Figure 1: Cost curve for mitigation options in the agriculture sector in 2030

The investment cost for mitigation options in the agriculture sector is shown in Table 57:

Table 57: Investment cost for mitigation options

Mitigation options	Scale (1000 ha/head)	Investment cost (million USD)
Unconditional contribution		1390.2
A1. AWD and SRI (high adoption/large scale)	200	181.1
A2. Mid-season drainage in rice cultivation	1000	1027.3
A3. Shifting double rice or triple rice to Rice-Shrimp	200	181.8
A4. Shifting double rice or triple rice to Upland Crop	200	0.036
Conditional contribution		4604.7
A5.1. Improvement of diary cow diets	500	6.8

Mitigation options	Scale (1000 ha/head)	Investment cost (million USD)
A5.2. Improvement of non-diary cow diets	7000	95.5
A5.3. Improvement of buffalo diets	1500	20.5
A6.1. Reuse of upland agricultural/crop residues	1200	30.0
A6.2. Introduction of biochar (large scale)	3500	318.2
A7.1. ICM in rice cultivation	1000	9.1
A7.2. ICM for annual upland crops cultivation	1000	9.1
A8. Substitution of urea with sulfate amon fertilizer	3500	15.9
A9.1. AWD and SRI (infrastructure partly financed)	500	795.5
A9.2. AWD and SRI (basic infrastructure)	1000	2075.0
A10. Drip irrigation combined with fertilizer for coffee	450	1227.3
A11. Improved technologies to recycle livestock dung as organic fertilizer	40000	1.8

Based on the current state of infrastructure, the cost of technology and scale of project implementation, investment can be developed for each option. Some options have high cost, such as AWD and SRI, biochar and drip irrigation for coffee. However, some options also have relatively low cost: conversion of rice land to rice-shrimp and improvement of animal diets.

5.2.2. Impact assessment of mitigation options on the socio-economy and environment

Regarding the co-benefits from mitigation options, economic co-benefits are the most important in favour of

expanding the development and application of technology. The second most important is adaptation to climate change, and reducing risks and damage caused by natural hazards and climate change impacts. For example, drip irrigation integrated with fertilizer for coffee is a good way to reduce GHG emissions from energy consumption and reduce N₂O from fertilization. This option is also important for saving energy pumping water, reduce fertilizer, producing stable coffee yields, and efficient use of land and water resources. Table 58 summarizes the impacts of mitigation options in the agriculture sector on the socio-economy and environment.

Mitigation options	Economic impact	Social impact	Environmental impact
A1. AWD and SRI (high adoption/large scale)	Save 15-20% of irrigation water, 5-10% of fertilizer and pesticides	Promote CSA, strengthen community linkages, raise efficiency and effective use of natural resources	Reduce GHG emissions, use of fertilizer and pesticide pollution
A2. Mid-season drainage in rice cultivation	Reduce irrigation water by 5-10%, 5% increase in yield	Release on-farming labour to do off-farm activities	Change soil and water environment
A3. Shifting double rice or triple rice to rice- shrimp	Increase of 230% in incomes	Diversify products, increase incomes, rational use of resources, adapt to saline intrusion and sea level rise	Reduce methane emissions, reduce inputs of fertilizers and pesticides, promote sustainable production
A4. Shifting double rice or triple rice to up-land crop	Increases of 0-200% in incomes; Reduce use of irrigation water by 50%	Increase incomes, rational use of resources, adapt to drought and flooded condition	Reduce methane emissions, reduce inputs of fertilizers and pesticides, promote sustainable production
A5.1. Improvement of dairy cow diets	Increase of 10-20% of milk yield and quality compared to using traditional diets	Increase intensive and sustainable livestock; increase the health and resistance of cows; Increase labour productivity	Reduce methane emissions
A5.2. Improvement of non-dairy cow diets	10-20% increase in yield and quality of meat	Increase intensive and sustainable livestock; increase the health and resistance of cows; Increase labour productivity	Reduce methane emissions
A5.3. Improvement of buffalo diets	10-20% increase in yield and quality of meat	Increase intensive and sustainable livestock; increase the health and resistance of cows; Increase labour productivity	Reduce methane emissions
A6.1. Reuse of upland agricultural/crop residues	Use agricultural/crop residues as organic fertilizer (1-2 tons/ha), Increase of 10% in yield and soil fertility	Use and reuse waste rationally as a resource, create jobs for people, improve productivity and incomes	Reduce open-field burning, increase organic sequestration in the soil, reduce environmental pollution caused by waste

Table 58: Impacts of mitigation options on the socio-economy and environment

SIPA SUPPORT TO VIET NAM FOR THE IMPLEMENTATION OF THE PARIS AGREEMENT

Mitigation options	Economic impact	Social impact	Environmental impact
A6.2. Introduction of biochar (large scale)	Produce valuable biochar (1-2 tons / ha), increase of 5% in yield at initial stage; increase water retention and nutrient uptake, increase efficiency of fertilizer by 5-10%	Use and reuse waste rationally as a resource, create jobs for people, improve productivity and incomes	Reduce open-field burning, increase organic sequestration in soil, reduce environmental pollution caused by waste
A7.1. ICM in rice cultivation	Reduce seeds by 5%, fertilizer by 5%, pesticides by 5%	Organize production better, protect farmer's health	Reduce the over-use of chemicals in production, improve environmental quality
A7.2. ICM for annual upland crops cultivation	Reduce seeds by 5%, fertilizer by 5%, pesticides by 5%	Organize production better, protect farmer's health	Reduce the over-use of chemicals in production, improve environmental quality
A8. Substitution of urea with Ammoniac sulphate fertilizer			Reduce GHG emissions
A9.1. AWD and SRI (large scale)	Save 15-20% irrigation water, 5-10% N fertilizer and chemicals	Promote CSA, strengthening community linkages, raise efficiency, effective use of natural resources	Reduce GHG emissions, reduce use of fertilizer and pesticide pollution
A9.2. AWD and SRI (large scale)	Save 15-20% irrigation water, 5-10% N fertilizer and chemicals	Promote CSA, strengthening community linkages, raise efficiency, effective use of natural resources	Reduce GHG emissions, reduce use of fertilizer and pesticide pollution
A10. Drip irrigation combined with fertilizer for coffee	Reduce irrigation water by 40%, fertilizer by 30%, labour for watering by 60% and electricity costs by 60%	Organize production better, raise farmer's incomes	Reduce GHG emissions, reduce use of fertilizer and pesticide pollution
A11. Improved technologies to recycle livestock dung as organic fertilizer	Reduce costs for mineral fertilizer (Produce 6-9 million tons of organic fertilizer for cultivation)	Create jobs	Reduce GHG emissions fron animal waste management

5.2.3. Comparisons with other studies

1) Vietnam INDC report

Table 59: Mitigation options in the INDC (2015)

Mitigation option	Scale 1000 unit	Reduction potential million tons CO ₂ e	Reduction/ha (tCO ₂ e/ha/year)	Mitigation cost (\$/t.CO ₂)
A1. Increased use of biogas	500	-3.17	-6.34	-43
A2. Reuse of agricultural residues as organic fertilizer	3500	-0.36	-0.10	63.02
A3. AWD and SRI in rice cultivation (small scale)	200	-0.94	-4.70	88
A4. Introduction of biochar (small scale)	200	-1.07	-5.35	75
A5. Integrated Crop Management (ICM) in rice cultivation	1000	-0.5	-0.50	20
A6. Integrated Crop Management (ICM) in upland annual crop cultivation	1000	-0.32	-0.32	25
A7. Substitution of urea with sulfate amonnia fertilizer	2000	-3.2	-1.60	30
A8. Reusing upland agricultural/crop residues	2800	-0.29	-0.10	73.02
A9. AWD and SRI (large scale)	1500	-7.02	-4.68	94.9
A10. Introduction of biochar (large scale)	3500	-18.8	-5.37	80.45
A11. Improvement of livestock diets	22000	-1.75	-0.08	-23.63
A12. Improvement of quality and services available for aquaculture, such as inputs and foodstuffs	1000	-0.41	-0.41	90
A13. Improvement of technologies and waste treatment in aquaculture	1000	-1.21	-1.21	95
A14. Improved irrigation for coffee	640	-3.39	-5.30	0.46
A15. Improved technologies in food processing and waste treatment in agriculture, forestry and aquaculture	21000	-3.36	-0.16	94
Total		-45.79		

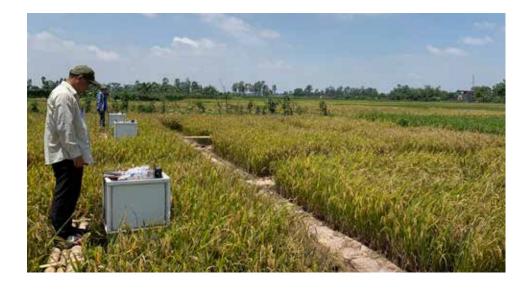
2) INDC implementation plan for the agriculture sector

After the Vietnam INDC was developed and submitted to UNFCCC by MONRE, MARD issued Dispatch No. 7208/ BNN-KHCN dated 25 August 2016 on building the plan for deploying INDC implementation in the agriculture sector for the period 2021-2030. MARD identified feasible mitigation activities from the INDC for the agriculture and rural development sector, as shown in Table 60.

Table 60: Mitigation options reviewed and proposed by MARD for INDC implementation in the agriculture sector

Mitigation options	Scale (1000 ha, 1000 heads of animals)	Mitigation potential (Mil. ton CO ₂ e)	Investment cost (bil. VND)
Unconditional contribution			
A1. Increased use of biogas	300	-1.91	3100
A3. AWD, and SRI in rice cultivation (small scale)	200	-0.94	2000
A11. Improvement of livestock diet	1600	-0.13	160
A15. Optimal irrigation for coffee	120	-0.24	100
A16. Mid-season drainage in rice cultivation	1000	-3.2	5000
Sub-total I:		-6.42	
Conditional contribution			
A1. Increased use of biogas	500	-3.17	3100
A8.Reuse of upland agricultural/crop residues	1200	-0.12	650
A9. AWD, and SRI in rice cultivation (large scale)	500	-2.34	4900
A11. Improvement of livestock diets	3000	-0.24	300
A12. Improvement of quality and services available for aquaculture, such as inputs and foodstuffs	190	-0.04	80
A14. Improved technologies in food processing and waste treatment in agriculture, forestry and aquaculture (1000 tons of agro-product)	2,000	-0.32	660
A17: Improved technologies to reuse animal waste as organic fertilizers	20,000	-3.4	7100
A18: Adjust structure of unsuitable ships and boats to aquaculture fields and replan for catching routes and exploration area	15	-0.69	3000
Sub-total II:		-10.32	
Total:		-16.74	

3) JICA's assessment of mitigation technologies


MONRE in 2015, JICA conducted an evaluation of mitigation options and assigned a list of relevant technologies as summarized in Table 61.

After the Vietnam INDC was submitted to UNFCCC by

Table 61: JICA's assessment results of mitigation technologies

Technology	Aim	Mitigation potential (Mil. ton CO ₂ e)
A1. Increased use of biogas	Building biogas tanks	-6.4
A2. Reuse of agricultural residues as organic fertilizer	Techniques for composting rice straw (in fields & farms)	10.7
A3. AWD and SRI in rice cultivation (small cale)	Focus on AWD techniques	-4.39
A4. Introduction of biochar (small scale)	Improve effectiveness of equipment	50-65%
A5. Integrated Crop Management (ICM) in rice cultivation	Focus on introducing high performance pumps	-5.2
A6. Integrated Crop Management (ICM) in upland annual crops cultvation	Use biochar	50-65%
A7. Substitution of urea with sulfate amonnia fertilizer	Energy-saving gas-powered appliances	-3.2
A8. Reusing of upland agricultural/crop residues	Techniques for composting crop residues on farms	-10.7
A9. AWD and SRI (large scale)	AWD	-4.39
A10. Introduction of biochar (large scale)	Improve effectiveness of biochar-producing equipment	50-65%
A11. Improvement of livestock diets	Supplement Fat + Amino Acid (Lysine) into feed for pigs and chickens	-1
A12. Improvement of quality and services available for aquaculture, such as inputs and foodstuffs	Increase efficiency of treatment for waste water from cattle, waste water from processing seafood	-7739
A13. Improvement of technologies in aquaculture and waste treatment in aquaculture	Generators (industrial scale)	-22,806
A14. Improved irrigation for coffee	Use high-capacity refrigeration systems in freezing + wastewater treatment for livestock, food processing and fisheries	165
A15. Improved technologies in food processing and waste treatment in agriculture, forestry and aquaculture	Drip irrigation technique	-5.3

06. Requirements for the implementation of mitigation options in the agriculture sector

6.1. Policies

In order to implement mitigation options in the agriculture sector, besides the GHG mitigation supporting policies summarized in Section 2.1, the agriculture sector requires policy support on the following issues:

- » Promulgation of policies to support mitigation actions in agriculture sector.
- » Establishing and operating a national MRV system to support the management and control of GHG emissions from the agriculture sector.

6.2. Technologies, Finance and Capacity Building

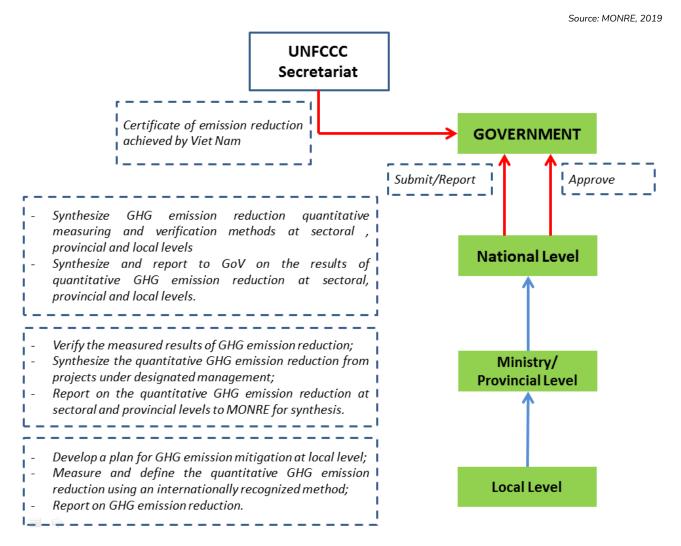
Needs to address technology, finance, and capacity building are presented in Table 62, where each option has its own need for technology; i.e. options AWD and SRI need a procedure on alternative wet and dry, SRI, or positive irrigation system following AWD and SRI procedures - for example, the ESCALA system for monitoring irrigation and drainage. Implementation of 200,000ha of this technology will require an investment of about USD 181.1 million. It also needs documentation, guidelines, and other materials for training and guiding AWD and SRI in practice, as well as demonstrations for key people at district and province level.

Mitigation **Financial needs Technology needs Capacity building needs Barriers** option (million USD) **Unconditional contribution** AWD package Field levelling; SRI package A1. AWD and Process, documents, books; organization; SRI (where Full irrigation and 181.1 training; field demonstration/ high investment; infrastructure is drainage system model; support for models small increases in fully financed) incomes **ESCALA** irrigation system Ununiformed field elevation; A2. Mid-season Process, documents, books; field levelling; drainage in rice Active irrigation system 1,027.3 training; field demonstration/ cultivation model; support for models Summer season and Autumn season Building shrimp farms A3: Shifting Process of shrimp and Process, documents, books; Disease; double rice or rice cultivation 181.1 training; field demonstration/ triple rice to ricemarket model; support for models Food for shrimp shrimp Fertilizers for rice Machinery for Process, documents, books; gardening, levelling training; field demonstration/ A4. Shifting fields model; support for models market double rice or 0.036 triple rice to The process of upland crops cultivation of upland crops **Conditional contribution** A5.1. Process, documents, books; **Diet formulas** Smallholder farmers; Improvement of 6.8 training; field demonstration/ Additives for new diets milk price dairy cow diets model; support for models A5.2. Process, documents, books; Smallholder farmers; **Diet formulas** Improvement of training; field demonstration/ 95.5 remote areas with non-dairy cow model; support for models Additives for new diets grazing diets A5.3. Process, documents, books; Smallholder farmers: Diet formulas Improvement of 20.5 training; field demonstration/ remote areas with Additives for new diets buffalo diets model; support for models grazing

Table 62: Requirements for technology, finance and capacity building for implementation of mitigation options

Mitigation option	Technology needs	Financial needs (million USD)	Capacity building needs	Barriers
A6.1. Reuse	Process of collection and composting			Collection;
of upland agricultural/crop residues	Method of organic fertilizer application	30.00	Documents, books; Training; Field demonstration/model	unfriendly use
	Testing the quality of organic fertilizer			
A6.2.	Process of biochar production		Charcoal furnace/ gasifier	High cost;
A0.2. Introduction of biochar (large	Method of biochar application	318.2	Process of producing biochar	complicated guidelines;
scale)	Testing the quality of		Training	air pollution;
	organic fertilizer		Field demonstration/model	implementation
A7.1. ICM in rice	ICM full package	9.1	Training	Farmer perceptions;
cultivation			Field demonstration/model	no manure
A7.2. ICM for annual upland	ICM full package	9.1	Training	Farmer perceptions;
crops cultivation			Field demonstration/model	no manure
A8. Substitution of urea with			Process of fertilizer production	Cost;
sulphate ammonia	Manufacturers/ factories (NH4)2SO4	15.9	(NH4)2SO4	acidic soil;
fertilizer			Training on the above method	changing of industry
	AWD package		Process, documents, books	Field levelling;
A9.1. AWD and SRI (where	SRI package		Training	organization;
Full irrigation and 795.5 drainage system ESCALA irrigation system	-	• • • • • • • • • • • • • • • • • • • •	Field demonstration/model	high investment;
	Support for models	small increases in incomes		

Mitigation option	Technology needs	Financial needs (million USD)	Capacity building needs	Barriers
				Field levelling;
	AWD package		Process, documents, books	organization;
A9.2. AWD	SRI package		Training	high investment;
and SRI (basic infrastructure)	Full irrigation and drainage system	2,075.5	Field demonstration/model	small increases in incomes; low
	ESCALA irrigation		Support for models	elevation fields;
	system			acid sulphate soils and saline soil
A10. Drip	Drip irrigation system and integrated fertilizer system		The benefits assessment and analysis of drip irrigation	
irrigation combined with	Irrigation; fertilizer	1,227.3	Process of watering	Up-front costs;
fertilizer for coffee	application;		Training	durability of water pipe
	Fertilizers for drip irrigation		Field demonstration/model	
A11. Improved technologies to	Technology for organic fertilizer production;			Smallholder farmers livestock decrease;
recycle livestock dung as organic fertilizer	factories, workshops, warehouses	1.8		farmer behaviour


07. Measurement, Reporting, and Verification for mitigation activities in the agriculture sector

7.1. Measurement, Reporting and Verification at national level

The establishment of a Measurement, Reporting and Verification (MRV) system at national, sectoral and local levels is necessary in order to assess the implementation and impact of each action to reduce GHG emissions as well as to ensure GHG emissions reduction targets in the NDC are achieved. Decision No. 2053/QD-TTg dated 28 October 2016 of the Prime Minister approving the Plan for Implementation of the Paris Agreement stipulates the tasks to be executed in the period 2016-2020, in which the establishment of the MRV system is one of the key tasks in the period 2018-2020. The national MRV system was proposed in the Third National Communication of Vietnam, which is illustrated in Figure 2.

7.2. Measurement, Reporting and Verification for Mitigation Activities in the Agriculture Sector

Measurement, Reporting and Verification (MRV) is the most important activity to maintain monitoring and evaluation of the scope and extent of CC mitigation options application/ adoption. Based on the current production system and the nature of production processes, each mitigation option requires the design of a separate MRV system.

The detailted activities of each mitigation option are detailed in Table 63.

Table 63: Proposed MRV activites for mitigation options in the agriculture sector

Mitigation option	Measurement	Reporting	Verification
A1. AWD and	Monitoring the status of AWD and SRI	Develop report on the	Work with stakeholders to
SRI (where	application; degree of applicability;	growth of rice applying	broaden the model; develop
infrastructure is	growth and yield of rice; measuring	AWD and SRI from	involvement mechanisms and
fully financed)	and quantifying of GHG emissions;	bottom to top	connect/link with carbon-
	economic benefits, cost		market

Mitigation option	Measurement	Reporting	Verification
A2. Mid-season drainage in rice cultivation	Monitoring the status of MS application; degree of applicability; growth and yield of rice; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of rice from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A3. Shifting double rice or triple rice to rice- shrimp	Monitoring the status of rice-rice and rice-shrimp farming systems; degree of applicability; growth and yield of rice; growth and yield of shrimp; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of rice-rice and rice-shrimp from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A4. Shifting double rice or triple rice to upland crop	Monitoring the status of rice-rice and upland crop farming system; degree of applicability; growth and yield of rice, upland crop; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of rice-rice and upland crop from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A5.1. Improvement of dairy cow diets	Monitoring the status and level of old and new formulas diet application; growth of cow and milk yield; measuring and quantifying GHG emissions; economic benefits, cost	Develop report on the growth of dairy cows from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A5.2. Improvement of non-dairy cows diets	Monitoring the status and level of application of the old and new diet; growth of cow and meat yield; measuring and quantifying GHG emissions; economic benefits, cost	Develop report on the growth of non-dairy cows from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A5.3. Improvement of buffalo diets	Monitoring the status and level of application of the old and new diet; growth of cow and meat yield; measuring and quantifying GHG emissions; economic benefits, cost	Develop report on the growth of buffalo from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A6.1. Reuse of upland agricultural crop residues as organic fertilizer	Monitoring the status and extent of collection and treatment of crop residues; growth and yield of crops applying organic fertilizer; measuring and quantifying GHG emissions; economic benefits, cost	Develop report on the growth of upland crops applying organic fertilizer, soil fertility from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market

Mitigation option	Measurement	Reporting	Verification
A6.2. Introduction of biochar (large scale)	Monitoring the status and extent of input material collection and production of biochar; growth and yield of crops applying biochar; measuring and quantifying GHG emissions; economic benefits, CBA	Develop report on the growth of crop applying biochar and soil fertility from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A7.1. ICM in rice cultivation	Monitoring the status of the ICM application; degree of applicability; growth and yield of rice; measuring and quantifying of GHG emissions; economic benefits, CBA	Develop report on the growth of rice applying ICM from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A7.2. ICM for annual upland crops cultivation	Monitoring the status of the ICM application; degree of applicability; growth and yield of annual upland crops; measuring and quantifying of GHG emissions; economic benefits, CBA	Develop report on the growth of crop applying ICM from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A8. Substitution of urea with sulphate ammonia fertilizer	Monitoring the status and level of SA application; growth and yield of crops applying SA; measuring and quantifying GHG emissions; economic benefits, CBA	Develop report on the growth of crops applying organic fertilizer, soil fertility from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A9.1. AWD and SRI (where infrastructure is partly financed)	Monitoring the status of AWD and SRI application; degree of applicability; growth and yield of rice; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of rice applying AWD and SRI from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A9.2. AWD and SRI (basic infrastructure)	Monitoring the status of AWD and SRI application; degree of applicability; growth and yield of rice; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of rice applying AWD and SRI from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market
A10. Drip irrigation combined with fertilizer for coffee	Monitoring the status and applicability of drip irrigation combined with fertilizer for coffee; growth and yield of coffee; measuring and quantifying of GHG emissions; economic benefits, cost	Develop report on the growth of coffee applying drip irrigation combined with fertilizer for coffee from bottom to top	Work with stakeholders to broaden the model; develop involvement mechanisms and connect/link with carbon- market

Conclusion

In this study, the IPCC Revised Guidelines on National GHG Inventory (GL 1996 revised) was used to conduct the GHG inventory for the agriculture sector in 2014 and project GHG emissions in 2020 and 2030. As a result, GHG emissions from the agriculture sector in 2020 and 2030 are projected to reach 104.5 MtCO₂e and 112.1 MtCO₂e, respectively.

Mitigation options for agriculture and rural development were developed based on the rule of reviewing mitigation options in the INDC, Government response to climate change, agriculture sectors, and other activities related to GHG emissions reduction. The assumptions were reviewed and analysed in the context of Government and sectoral efforts to reducing GHG emissions in the Paris Agreement. The results showed that the agriculture sector has determined 4 options for GHG emissions reduction that can implemented domestically:

#	Mitigation option	Mitigation potential in million tons of CO ₂ e	Required investment in USD million
A1	AWD and SRI (where infrastructure is fully financed)	0.94	181.8
A2	Mid-season drainage in rice cultivation	3.20	1027.3
A3	Shifting double rice or triple rice to rice-shrimp	1.31	181.1
A4	Shifting double rice or triple rice to upland crops on the scale of 0.2 million ha of rice, 1.1 million ha of rice, 0.2 million ha of rice-shrimp, and 0.2 million ha of upland crop with mitigation potential, respectively	1.43	0.036

#	Mitigation options	Mitigation potential in million tons of CO2e	Required investment in USD million
A5.1.	Improvement of 0.8 million dairy cow diets	0.1	6.8
A5.2.	Improvement of 7 million non-dairy cow diets	1.2	95.5
A5.3.	Improvement of 1.5 million buffalo diets	0.3	20.5
A6.1.	Reuse of 1.2 million ha upland agricultural/crop residues as organic fertilizer	0.1	30.0
A6.2.	Introduction of 3.5 million ha biochar (large scale)	18.8	318.2
A7.1.	ICM in 1.0 million ha rice cultivation	0.5	9.1
A7.2.	ICM for 1.0 million ha annual upland crops cultivation	0.3	9.1
A8.	Substitution of 3.5 million ha urea with Ammoniac sulphate fertilizer	5.6	15.9
A9.1.	AWD and SRI 0.5 million ha (where infrastructure is partly invested)	2.3	785.5
A9.2.	AWD and SRI 1.0 million ha (basic infrastructure)	4.7	2,075.0
A10.	Drip irrigation combined financed fertilizer for 0.45 million ha coffee	1.7	1,227.3
A11.	Improved technologies to recycle 20 million tons of livestock dung as organic fertilizer	6.8	1.8

With international support, the country could implement twelve further mitigation options:

In order to achieve the mitigation targets, the study recognizes the barriers and constraints on policy, technology, finance and capacity building and the human and financial resources required to overcome these barriers. agriculture sector in case of unconditional contribution. An additional US\$ 4604.7 million would need to be mobilized from international sources in order to reduce an additional 29.14 MtCO₂e compared to the BAU scenario in 2030.

The total amount of domestic funding needed is USD 1390.2 million to implement mitigation options in the

References

- 1. Asher C.J., Edwards D.G. and Howeler R.H. (1980). *Nutritional Disorders of Cassava* (*Manihot esculenta Crantz*). University of Queensland, Australia.
- 2. Cao Ky Son (2002). Efficiency of using fertilizers for plant varieties throughout the periods in Vietnam. Seminar on fertilizer, Soils and Fertilizers Research Institute.
- FAO (1998), Proceedings of the Regional Expert Consultation on Modern Applications of Biomass Energy, FAO Regional Wood Energy Development Programme in Asia, Report No.
 36, Bangkok. US Greenhouse Gas Inventory Report 1990-2014 (published April 2004)
- FAO (2019). FAOSTAT, available at <u>http://www.fao.org/faostat</u>, last accessed on 18 May 2019.
- 5. GSO (2017). Statistical Yearbook in 2016.
- 6. GSO (2018). Statistical Yearbook in 2017.
- 7. GSO Statistic Yearbook (2016). Statistical Yearbook 2015
- 8. Institute for Soils and Fertilizers (2005). Fertilizer handbook.
- 9. Institute for Soils and Fertilizers (2009). Fertilizer Handbook.
- IPCC (1997). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Houghton, J.T., Meira Filho, L.G., Lim, B., Tréanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J. and Callander, B.A. (Eds). Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/IEA, Paris, France.
- IPCC (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Enmanuel, S., Buendia, L., Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K. and Tanabe, K. (Eds). Intergovernmental Panel on Climate Change (IPCC), IPCC/OECD/ IEA/IGES, Hayama, Japan

- 12. Le Van Can (1975). Handbook of fertilizer. Liberation Publishing House.
- 13. MARD (2014). Statistical Yearbook in 2014.
- 14. MARD (2016). Statistical Yearbook of Agriculture and Rural Development in 2015.
- 15. MARD (2017). Action plan to respond to climate change in agriculture and rural development sector in 2016-2020 period with a vision to 2050.
- 16. MARD (2017). Green Growth Action Plan for Agricultural and Rural Development sector to 2020.
- 17. MARD (2017). INDC Implementation Plan of Agriculture and Rural Development sector for 2021-2030 period.
- 18. Ministry of Natural Resource and Environment (MONRE) (2017). Vietnam's Second Biennial Update Report to UNFCCC
- 19. MONRE (2010). Vietnam's Second National communications to the United Nation Framework Convention on Climate Change.
- 20. MONRE (2014). Vietnam's Initial Biennial Update Report to the United Nations Framework Convention on Climate Change.
- 21. MONRE (2019). Vietnam's Third National communication to the United Nation Framework Convention on Climate Change
- 22. National Institute of Agricultural Planning and Projection (2014). *The Agricultural, Forestry and Fishery Statistics.*

International Climate Initiative (IKI)

This project is part of the International Climate Initiative (IKI). The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag

www.international-climate-initiative.com www.bmu.de/en. Published by: GIZ Office Vietnam Project "Support to Vietnam for the Implementation of the Paris Agreement"

Address

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Viet Nam Office Unit 031, 3rd Floor, Coco Building, 14 Thuy Khue, Tay Ho District, Hanoi, Viet Nam Phone: (+84) 0243.2373.110 Email:: office.sipa@giz.de