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A B S T R A C T   

Robusta coffee is the primary source of income for millions of smallholder farmers throughout the 
world’s tropics. The price smallholder farmers can get for their coffee is strongly influenced by 
bean characteristics (i.e. beans are of a sufficient size and have minimal defects). Climate is a key 
determinant of successful coffee production, but scant research has been undertaken to test and 
quantify climate impacts on robusta coffee bean physical characteristics. Here we investigate how 
climate relates to the risk of poor coffee bean characteristics in one of South East Asia’s key coffee 
producing areas, the central highlands of Vietnam. We use 5 years (2012–2016) of coffee bean 
characteristic data from 60 farms. Hierarchical modelling was used to investigate how rainfall 
and temperature related to two indicators of coffee bean characteristics (1) the probability of 
below average coffee bean size and (2) the probability of above average coffee bean defects. Low 
rainfall (<1600 mm) during the late growing season (July-September) greatly increased the risk 
(>80% probability) of below average coffee bean size. Conversely, high rainfall (>750 mm) and 
high mean minimum temperature (>22 ◦C) during harvest (October-December) increased the risk 
(>75% probability) of above average coffee bean defects. Various coffee bean characteristic 
subcomponents (e.g. insect damage and mouldy beans) and different bean sizes were also 
examined and were affected by a range of rainfall and temperature predictors across the flow-
ering, growing and harvest seasons. With this information targeted risk-management strategies (e. 
g. targeted irrigation during hot and dry growing seasons, adjusting harvest timing and 
employing drying techniques during wet and cold harvest periods) could be developed to mini-
mise the effect of climate conditions that increase the risk of coffee bean defects. Successfully 
managing the impacts identified here, could decrease coffee bean defects and in turn increase the 
incomes of smallholder coffee farmers.   

1. Introduction 

Robusta coffee (Coffea canephora, Pierre ex A. Froehner) supplies up to 40% of the world’s coffee and is a critical export for many 
tropical developing countries (ICO, 2019). With rainfall and temperatures projected to change in many important coffee producing 
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areas (e.g. South East Asia, Chotamonsak et al., 2011; Dai, 2013) a key threat to the future sustainability of coffee production is climate 
variability and change (Moat et al., 2017; Kath et al., 2020). There has been some research on how farmers can maintain and increase 
robusta coffee yields under different climatic conditions (e.g. by managing biodiversity and optimizing inputs, DaMatta and Ramalho, 
2006; Byrareddy et al., 2020), but little on the climatic drivers of robusta coffee bean characteristics. This is a surprising knowledge gap 
given that price reductions caused by coffee bean defects and the importance of robusta for millions of the world’s farmers. 

The chemical composition of green coffee beans is not only determined by species and variety, but also influenced by a number of 
different factors including; the terroir, harvesting methods (handpicked or mechanical), seed processing (wet, dry, or semi dry) and 
storage (Franca et al., 2005; Casas et al., 2017). Ultimately, this chemical composition is what determines the price the coffee will 
attain. In order to objectively set a price, the coffee is commonly categorized or graded using three approaches: i) by types and defects, 
ii) by bean size (sieve) and iii) beverage quality (Brighenti and Cirillo, 2018). Understanding the factors that affect coffee bean 
characteristics is a key knowledge requirement for coffee farmers as it ultimately determines the price farmers can get for their coffee 
crop (Boscollo. L. pers comm.). More importantly, the ability to tease apart the determinants of intrinsic coffee defects (quantification 
and importance of meteorological variables) underpins the development of management strategies that could mitigate the financial 
losses incurred by farmers. 

Research on arabica coffee beans has emphasised the importance of rainfall and temperature (Vaast et al., 2006; Santos et al., 2015; 
Bote and Vos, 2017). Higher temperatures accelerate berry ripening and in turn increase bean defects (Vaast et al., 2006; Santos et al., 
2015). The amount and timing of rainfall can also affect coffee beans – too little rainfall during the growing season stresses plants, 
causing branch death and defoliation, reducing resources for fruiting and leading to small and damaged coffee beans (DaMatta et al. 
2018). High temperatures can accelerate berry development and ripening (Craparo et al., 2015), which reduces bean filling and in turn 
causes smaller bean sizes (DaMatta et al., 2018). 

Unfavourable rainfall and temperature can also promote the conditions that damage and discolour coffee beans. Too much rainfall 
can dislodge flowers and fruits, or if heavy rain occurs during harvest, increased moisture favours conditions for mould growth, disease 
and excessive fermentation, all of which may increase coffee bean defects (Taniwaki et al., 2014). Alongside increased moisture from 
high rainfall, higher temperatures can also promote mould growth, as well as damaging insects, such as the coffee berry borer 
(Hypothenemus hampei) and mealybugs – the reproductive rates of which are closely linked to temperature (Jaramillo et al., 2009; 
Jayakumar and Rajavel, 2019). Despite the potentially important role that climate has in driving factors known to damage coffee beans 
there has been little research on the impacts of rainfall and temperature on robusta beans throughout the production cycle (i.e. from 
flowering through to harvest). 

Fig. 1. Vietnam with the study province (Lam Dong) in black in the coffee producing areas of the central highlands.  
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It is not well tested whether robusta coffee bean characteristics respond to temperature and rainfall variation in a similar way as 
arabica beans. Arabica yields are more sensitive to temperature increases than robusta (Craparo et al., 2015; Martins et al., 2018; Kath 
et al., 2020), but it is unknown whether this is also the case for coffee bean size and defects. Previous studies in the key robusta growing 
areas of South East Asia have focused on robusta coffee yields sensitivity to climate variability (Kath et al., 2020; Byrareddy et al., 
2020). Kath et al. (2020) showed strong relationships between temperatures and yields. In the central highlands of Vietnam, Byrareddy 
et al. (2020) has also examined the impact of irrigation practices and drought on coffee yields. However, these studies did not look at 
the relationship between climate and robusta coffee bean characteristics, which along with yield, are key determinants of how much 
farmers get payed for their coffee. 

To address this gap, here we investigate the impact of rainfall and temperature on two economically important indicators of coffee 
beans, (1) the probability of small coffee bean size and (2) the probability of high coffee bean defects, both of which are metrics used to 
determine the price a farmer can get for their coffee crop (K’ Doan ECOM, pers. comm, 5 February 2020). We hypothesise that climatic 
conditions will influence the likelihood of undesirable robusta coffee bean characteristics occurring (hereafter referring to bean size 
and bean defects) in two ways. First, low rainfall during the growing season will increase plant stress and in so doing, reduce fruit 
development and ultimately coffee bean size. Second, high temperatures and rainfall during the growing season and harvest will 
promote conditions that increase the risk of bean defects (e.g. mouldy and insect damaged beans). 

2. Methods 

2.1. Study area 

The study was in the central highlands of Vietnam, one of the world’s most important robusta coffee producing areas. To investigate 
the impact of climate on robusta coffee beans we used data from Vietnamese farmers. Vietnam is the largest exporter of robusta coffee 
in the world, accounting for 40% of the world’s supply (Marsh, 2007). Based on 2018/19 market prices (USD1.62/kg), the estimated 
value of robusta coffee exports for Vietnam is ~USD 2.8 billion per annum (USDA, 2019). 

The main robusta coffee producing areas are located in the Central Highlands of Southern Vietnam, encompassing the provinces 
Lam Dong, Dak Lak, Dak Nong, Gia Lai, and Kon Tum. These areas account for > 90% of Vietnam’s robusta coffee production (D’haeze 
et al., 2005). Within the Central Highlands, coffee bean data was collected from 30 farmers from Bao Loc and Bao Lam districts (total 
number of farms was 60) in Lam Dong province (Fig. 1) over 5 seasons from 2012 to 16 (total n = 300). This is a different dataset, 
covering a smaller spatial and temporal scale, than that examined by Kath et al. (2020). 

Over the study period from 2012 to 2016 mean annual minimum and maximum temperatures in the region were 21.8 ◦C and 
29.9 ◦C respectively, while mean total annual rainfall was 2128 mm (NCHMF, 2018). The coffee growing season in Lam Dong runs 
from January to September. Flowering runs from approximately January to February. The early growing season (including cherry 
development) from March to June, while the late growing season (including cherry maturation) from July to September. Harvest is 
from late October to December. 

Rainfall in the Central Highlands is usually concentrated around the summer monsoon (May-October). However, the rainy season 
onset data (RSOD) is primarily driven by El Niño-Southern Oscillation (ENSO), which is responsible for substantial variation between 
years and regions (Pham-Thanh et al., 2020). The RSOD generally starts later in El Niño years and earlier during a La Niña (Pham- 
Thanh et al., 2020). Likewise, total precipitation and precipitation intensity (number of days with heavy rain) has increased over the 
years and will continue to do so in future (Schmidt-Thome et al., 2015; Pham-Thanh et al., 2020). In accordance with other regions of 
SE-Asia, temperatures have increased over Vietnam and are projected to increase further under future climate scenarios (Schmidt- 
Thome et al., 2015). 

2.2. Robusta coffee cultivation practices 

Coffee in the study area is cultivated under open sun, with some inter-cropping of fruit and timber trees. Overall, farms ranged from 
0.2 to 6.0 ha in size and were located between 694 and 905 masl. In the study region, bean yield varied between 2.8 and 6.8 ton− 1 ha, 
and average yield recorded at 3.8 ton− 1 ha. Plants are irrigated during the dry season (January – April) to synchronize flowering and 
fruit setting, and to protect the crop from droughts and boost production (Byrareddy et al., 2020). The major fertilizer types applied are 
blended NPK, urea, superphosphate and potassium chloride) in addition to compost and lime and is applied around four times in year 
(Byrareddy et al., 2019). The major pest and disease affecting the crop are respectively mealybugs (Hemiptera: Pseudococcidae) and 
anthracnose (Colletotrichum spp.). Farmers rely on chemical control as the main pest and disease management strategy. The harvest is 
carried out manually by hand picking in 2–3 rounds, farmers collect the coffee cherries and dry them under open sun prior to pro-
cessing. The surveyed farmers reported, drying and hulling of cherries takes about 8 to 10 sunshine days, and if it rains during this 
period they protect it by using plastic sheets. 

2.3. Coffee bean and climate data 

Coffee bean data was collected after the completion of harvest and processing of coffee cherries into beans during January in each 
year. Samples were collected directly from coffee farms. At each farm a composite sample was drawn, using a coffee bean sampler to 
draw a random sample of beans. Each sample was mixed thoroughly to make a composite representative sample weighing about 1500 
g, which was then used for analysis of bean characteristics. 
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Two indicators of coffee bean characteristics were calculated (1) coffee bean size and (2) total coffee bean defects. These two 
indicators are used to price coffee beans, with good scores of coffee bean size and low defects leading to higher prices (up to 25% higher 
relative to gross returns), while poor scores can lead to losses of ~ 10%. When these two coffee bean metrics are poor (i.e. when bean 
defects are high and bean size small) farmers can lose up to a third of their gross returns (K’ Doan ECOM, pers. comm, 5 February 
2020). 

Coffee bean size was assessed based on ISO 4150 (Size analysis — Manual and machine sieving). This involved transferring a 100 g 
test portion into a series of sieves of descending screen sizes (16 (largest) to 12 (smallest)). Coffee beans were then agitated on sieves by 
hand for 3 min so that beans covered the whole perforated surface. After this the sieves were tapped once on a firm surface so that any 
beans loosely retained in the holes fell into the next sieve size. The amount of coffee retained on each sieve and in the receiver was then 
weighed and transformed to a percentage (ISO, 2011). Bean defects were calculated as in ISO 10,470 (Green coffee — Defect reference 
chart). Sample size for defect counts was based on a representative sample of 300 g. The percentage of total defect beans, which 
included those with foreign matter (stones, sticks and husk), black, broken and brown beans, mouldy beans and insect damaged beans 
(after ISO, 2004), was calculated for each sample. From the dataset collected in this analysis, bean size and bean defects measurements 
were converted to above and below average (more than 11% total defects and less than 75% with a bean size above 16) (Table 1) for 
analysis so results could be presented as a probability that is directly interpretable by farmers and industry for risk management. All 
measurements were made at ECOM Agroindustrials Coffee Laboratory, Ecom Bao Loc factory, Bao Loc (Dist), Lam Dong province. 
Descriptive statistics of the coffee bean data used are in Table 1. 

Daily precipitation, mean, minimum and maximum temperature data was obtained from weather stations within 3 km of farms, i.e. 
Boa Lac (Latitude = 11.55, Longitude = 107.81) and Boa Lam (Longitude = 107.91, Latitude = 11.55) stations from the Vietnamese 
National Centre for Hydro-Meteorological Forecasting (NCHMF, 2018). These stations collect daily data on rainfall and temperature. 
Climate variables for different coffee phenological stages; flowering (January-February), the early growing season (March-June) the 
late growing season (July-September) and harvest (October-December) (adapted from Kath et al., 2020) were calculated for total 
rainfall, average temperature, minimum temperature and maximum temperature. Across the study period during the growing and 
harvest season mean total rainfall was 1620 and 508 mm respectively. Mean minimum and maximum growing season temperatures 
were respectively 21.9 ◦C and 30.2 ◦C, while during harvest they were 21.6 ◦C and 29.0 ◦C. 

2.4. Analyses 

The probability of certain coffee bean characteristics occurring was quantified using hierarchical models (also referred to as mixed- 
effect or multi-level models), which included climate variables as fixed effects, as well as random effects to account for potential spatial 
and temporal correlations (e.g. from annual repeat measurements at a particular site). Traditional non-hierarchal linear regression 
models do not account for repeat measures or non-independence in observations. For example, bean characteristic observations at a 
site, or within particular years, may be more similar (e.g. higher on average if soils and management techniques are better) relative to 
other sites or during different years. To account for this, hierarchical modelling allows for the intercept (or baseline) in the model to 
vary amongst the same sites and years. Hierarchical statistical models efficiently account for the influence of these grouping factors (e. 
g. site and year) and eliminate many problems associated with spatial and temporal autocorrelation, pseudo-replication and also 
reduce the risk of Type I and II errors (Bolker et al., 2009; Harrison et al., 2018). Importantly, in the context of this study because 
hierarchical models allow for the intercept to vary, this enabled us to quantify the effect of rainfall and temperature on coffee bean 
characteristics, while accounting for differences between sites (e.g. management practices) and the non-independence of coffee bean 
data at each site. 

Generalized linear mixed models (GLMMs) are a type of hierarchical modelling that extend linear mixed models (which include 
random effects) to non-normal data types such as counts or binary data, which widely occur in environmental studies (Bolker et al., 
2009). GLMMs were used to model the probability of coffee bean characteristics for the indicators assessed as a function of climate 
parameters. A separate model for each coffee bean characteristic sub-component (i.e. each defect and size class) was fit using a logit 
link and a binomial distribution. All models were fit in R version 3.6.0 (R Core Team, 2019) using the lme4 package (Bates et al., 2015). 

Climate predictor variables (i.e. inputs) modelled as fixed effects using GLMMs were mean minimum temperature, mean average 
temperature, mean maximum temperature and total rainfall during the flowering, early growing, late growing and harvest seasons. 
Models included two-way interactions between rainfall and each temperature variable within each season. Predictors were stand-
ardised [mean(x)/1.sd(x)] so effect sizes could be compared. Random effects were site and the year of each survey. Predictors which 
were correlated at Pearson r ≥ 0.7, the level at which collinearity can bias regressions, were not combined in the same model (Dormann 
et al., 2013) (see Supplementary S1 for correlations between all climate predictors). Model performance was assessed by calculating 
receiver operator characteristic (ROC) curve values using the Hmisc package (Harrell and Dupont, 2020) in R (R Core Team, 2019). 
ROC values over 0.9 indicate an excellent model, values between 0.8 and 0.9 a good model, values between 0.7 and 0.8 an acceptable 

Table 1 
Descriptive statistics of the two coffee bean deficiency measures (bean size and total defects) used in the study.  

Coffee bean response Min Mean Max SD Number above average samples Number below average samples Total N 

Bean size (%)  47.9  75.6  93.9  8.7 149 151 300 
Total defects (%)  6.1  11.2  19.2  2.2 139 161 300 

SD = standard deviation. 
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model, values between 0.6 and 0.7 a poor model and values of 0.5 indicate no ability to predict the outcome. 
The most parsimonious set of climate predictors for each of the coffee bean characteristic indicators was selected using automated 

model selection through subsetting the maximum model using the MuMIn package (Barton et al., 2020) in R (R Core Team, 2019). 
Model selection was performed using Akaike’s Information Criterion (AIC). Models with the smallest AIC value are those that most 
parsimoniously explain the variation in coffee bean characteristics across the full range of models (i.e. all possible combinations of 
climate predictors, except for those with a Pearson r correlation ≥ 0.7, which were not combined in the same model). 

3. Results 

3.1. Robusta coffee bean defect model selection & performance 

Rainfall and temperature predictors were present in all of the best models (i.e. the most parsimonious model) for total coffee bean 
defects and coffee beans with a screen size over 16, as well as for each of the subcomponents of these indicators that were modelled 
(Table 2). All coffee bean defect models, aside for the one for insect damage, had significant interactions between rainfall and tem-
perature in the best models (Table 2). None of the models for coffee bean size included interaction terms. Coefficients for all terms in 
the best models are shown for coffee bean defects and coffee bean size indicators in Figs. 2 and 3 respectively. 

Models for coffee bean defect and bean size generally performed well with ROC values over 0.7 (Table 2). The model for foreign 
matter performed the poorest, with an ROC value of 0.68. The model for insect damage performed the best with an ROC value of 0.98. 
The models for the main responses, total defects and bean size over a screen size of 16, both performed well with ROC values of 0.82 
and 0.89 respectively (Table 2). 

3.2. Climate drivers of coffee bean defects and size 

3.2.1. High rainfall during harvest increases the risk of coffee bean defects 
Increased rainfall during harvest was associated with an above average probability of total coffee bean defects (Fig. 2a). When 

rainfall during harvest was > 750 mm there was an elevated risk (>75% probability) of above average coffee bean defects (Fig. 4a). 
The likelihood of several subcomponents of coffee bean defects (i.e. insect damage, mouldy beans and foreign matter) also increased 
with rainfall during the late growing season (Fig. 2) Rainfall during harvest was associated with a slight reduction in the likelihood of 
above average foreign matter (Fig. 2g). 

Higher temperatures were generally associated with an increased likelihood of defects, although there was seasonal variation in 
this relationship depending on the subcomponent of coffee bean defect modelled (Figs. 2, 4 and 5). The likelihood of total defects 
increased as minimum temperatures increased during harvest (Fig. 4b). Early in the growing season, high average temperatures were 
related to above average insect damage and brown beans (Fig. 2bd and 5ac). High maximum temperatures were also associated with 
increased risk of mouldy and black beans in the early and late growing season respectively (Fig. 2ce and 5bd). High maximum 
temperatures during harvest were also linked with an increased likelihood of mouldy and broken beans (Fig. 2ef and 5e). Conversely, 
low maximum temperatures during the late growing season and harvest were respectively associated with an increased risk of broken 
and black beans (Fig. 2cf). 

Total defects, as well as several of its subcomponents (i.e. black, brown, mouldy and broken beans, as well as foreign matter) were 
significantly related to interactions between rainfall and temperature (Table 2). Total defects showed the strongest response to rainfall 
and temperature interactions. Co-occurring high harvest rainfall (e.g. > ~ 750 mm) and mean minimum temperatures (> ~ 22 ◦C) 
raised the probability of above average coffee bean defects to over 80% (Fig. 6). Conversely, when rainfall and/or mean minimum 

Table 2 
Climate predictors selected in the most parsimonious regression model (see Section 2.4 for model selection methods) for each of the indicators of 
coffee bean defects and size modelled. Asterisks represent levels of significance for each parameter in the model (see below table).  

Response Climate predictors in best model ROC AUC^ 

Coffee bean defect indicators  
Total defects Harvest tmin*** + Harvest rainfall** + Harvest rain × Harvest tmin***  0.82 
Insect Early grow tavg*** + Early grow rain + Late grow rain  0.98 
Black Harvest rain + Late grow rain + Late grow tmax** + Harvest tmax*** + Harvest rain × Harvest tmax**  0.88 
Brown Late grow rain* + Early grow tavg*** + Late grow tavg + Late grow rain × Late grow tavg***  0.79 
Mouldy Early grow rain* + Late grow rain*** + Early grow tmax*** + Harvest tmax* + Early grow rain × early grow tmax*  0.77 
Broken Late grow rain* + Late grow tmax*** + Harvest tmax*** + Late grow rain × late grow tmax  0.75 
Foreign matter Late grow rain** + Early grow rain + Harvest rain*** + Late grow tavg + Late grow rain × late grow tavg***  0.68 
Coffee bean size indicators  
Screen size over 16 Flower tmax** + Early grow tmax*** + Early grow rain*** + Late grow rain***  0.89 
Screen size 18 Flower tmax*** + Early grow tmax*** + Early grow rain*** + Late grow rain***  0.87 
Screen size 16 Flower rain* + Late grow tmax*** + Early grow rain*** + Late grow rain***  0.78 
Screen size 13 Flower tmax*** + Early grow tmax*** + Early grow rain*** + Late grow rain***  0.86 
Screen size 12 Flower rain*** + Late grow tavg*** + Early grow rain**  0.83 
Screen size under 12 Early grow tmax*** + Early grow rain*  0.80 

p*<0.05, **<0.01,***<0.001 ; ^.PReceiver operating characteristic – area under the curve 
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Fig. 2. Parameter estimates (estimates of standardised effect size) for rainfall and temperature predictors on the probability of key indicators of 
coffee bean defects. Error bars are 95% confidence intervals. Positive effect sizes indicate that the parameter increases the risk of that defect, while a 
negative effect the opposite. Note different y-axis ranges. 
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Fig. 3. Parameter estimates (estimates of standardised effect size) for rainfall and temperature predictors on the probability of particular coffee 
bean size classes not occurring. Error bars are 95% confidence intervals. Positive effect sizes indicate that increases in that parameter decrease the 
probability of that bean size class occurring, while negative effect sizes the opposite. Note different y-axis ranges. 
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temperatures decreased the likelihood of above average total coffee bean defects was lower (<50%) (Fig. 6). 

3.2.2. Low rainfall and high maximum temperatures during the growing season increase the risk of below average coffee bean size 
Rainfall was a consistently important predictor of coffee bean size across all of the size classes examined, although its effect varied 

from positive to negative depending on the season (Fig. 3). Low rainfall (<800 mm) late in the growing season was associated with a 
decreased likelihood of getting large beans (e.g. screen size over 16, screen size of 18, Fig. 3ab, Fig. 7a) and similarly an increased 
likelihood of small beans (screen size 16, screen size 13, screen size 12, screen size under 12, Fig. 3cdef). Conversely, low rainfall 
during either flowering or the early growing season was associated with an increased likelihood of large beans (screen size over 16, 
screen size 18, Fig. 3ab) and a decreased likelihood of small beans (screen size 16, screen size 13, Fig. 3cd). 

The influence of temperature also varied between seasons (Figs. 3 and 8). During flowering, high temperatures corresponded to a 
decreased likelihood of large beans (screen size over 16, screen size 18, Fig. 3ab) or an increased likelihood of particular small bean size 
classes occurring (screen size 13, Fig. 3d). In contrast, high temperatures during the early and/or late growing season corresponded to 
an increased likelihood of large beans (screen size over 16, screen size 18, Fig. 3ab, Fig. 8a) or similarly a decreased likelihood of small 
beans (screen size 16, screen size 13, screen size 12 and screen size under 12, Fig. 3cdef, Fig. 8ce). 

4. Discussion 

We hypothesised that low rainfall during the growing season will reduce fruit development and ultimately coffee bean size and that 
higher rainfall and temperatures during the growing season and harvest will increase the likelihood of bean defects. In contrast to our 
first hypothesis, our analysis suggested that while low rainfall during the late growing season was associated with smaller beans, low 
rainfall during the early growing season and flowering had the opposite effect. Therefore, our results suggest that there are important 
seasonal differences in how climate affects robusta coffee bean size. In regard to our second hypothesis we showed that higher rainfall 
and temperatures during the growing season and harvest were associated with an increased chance of coffee bean defects, but that the 
effect of rainfall interacted with temperature. We discuss these results about coffee bean defect and size responses to climate across 
seasons below. 

4.1. Climate risk and coffee bean size 

No studies have previously investigated robusta coffee bean responses to climate in South East Asia. Although, Martins et al. (2018) 
did suggest that robusta production in Brazil is highly sensitive to periods of low rainfall. Our findings are also consistent with previous 
research suggesting differences in arabica coffee bean size were associated with low rainfall (Cannell, 1974). Cannell (1974) argued 
that drought increased water stress and prevented ovules from reaching full size while fruits expanded, thus resulting in smaller coffee 
beans. In this study, rainfall and temperatures influenced coffee bean size across all of the size classes examined, although their effect 
varied depending on the season. Dry and warm conditions in the late growing season lowered the likelihood of getting large beans. In 
contrast, dryer and warmer conditions during flowering and the early growing season seemed to favour the development of large 
beans. 

The seasonal differential response of coffee to drought has been well documented. Moisture stress triggers flowering in coffee and 
so excessive rain and cool conditions during the quiescent growth phase can repress flowering, and in turn yields (DaMatta & Ramalho, 

Fig. 4. Probability of above average coffee bean total defects in response to (a) total harvest rainfall and (b) harvest minimum temperatures. Results 
are based on responses from the best model for total defects (see Table 2), Shaded areas are 95% confidence intervals. 
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2006). Across South East Asia, Kath et al. (2020) showed that while high temperatures coupled with dry conditions were the most 
favourable for robusta productivity during flowering, during growing the opposite was the case, with lower temperatures and high 
rainfall during the growing season being most favourable. Likewise, the results of this study suggest robusta coffee bean size is 
differentially influenced by climatic factors with responses depending on whether it is the flowering or growing season. 

Responses to climate were largely consistent across size classes, with large beans response being the inverse of small beans. 
Although, it should be noted that the model for very small beans (bean screen size under 12) only contained variables from the early 
growing season, whereas all other size classes contained variables from flowering, early growing and late growing seasons. This could 
suggest that climatic conditions during the early growing season as the cherry begins to form, is a key period of vulnerability. It could 
be that heat stress during this period increases the risk of stunting coffee beans, causing them to remain very small (under a screen size 

Fig. 5. Probability of above average coffee bean defects related to the different components of coffee bean defects in response to rainfall and 
temperature predictors with the strongest effect during different seasons. Results are based on responses from the best model from each component 
(see Table 2), while all other predictors are held at their mean. Shaded areas are 95% confidence intervals. 
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of 12). This however requires further research to verify. 

4.2. High rainfall during harvest increases the risk of coffee bean defects 

Higher rainfall during harvest was associated with an increased risk of above average total defects. High rainfall during the late 
growing season was also associated with a higher risk of mouldy beans. Mould/fungal growth is stimulated under humid tropical 
conditions, reinforcing the observations found here that high rainfall late in the growing season increases the risk of coffee bean 
defects, and specifically mouldy beans (Poltronieri and Rossi, 2016). Further along the production chain once the cherries have been 
harvested, increased precipitation or humidity, night dew and rewetting of partially dried cherries during coffee cherry drying (post 
harvest operations) has been identified as one of the crucial factors during which mould formation can take place (Coffee Guide 2014). 
The exception to the impact of high rainfall was for foreign matter, where increased rainfall in harvest decreased risk. This may be 
because rain during the harvest period removes dust and debris. 

Increased temperature during the growing season and harvest was associated with an increased likelihood of total defects, as well 
as for many of its subcomponents (e.g. insect damage, black beans, brown beans and mouldy beans). Insect damage consists typically of 
beans displaying one or several entry holes and galleries that reduce bean weight and cup quality. This defect is generally attributed to 
the coffee berry borer, Hypothenemus hampei (Ribeyre and Avelino, 2012), although the coffee bean weevil (Araecerus fasciculatus), that 
may cause a similar damage, has been reported recently from field-collected robusta berries in the study region (Alba-Alejandre et al., 
2018). Being reasonable to assume that H. hampei was behind most of the damage recorded, our results are consistent with previous 
research on the species’ thermal biology. We detected a pronounced increase in the probability of obtaining insect damage at 27.5 ◦C in 
early season average temperature, coinciding with the mean temperature at which the pest is predicted to display its maximum 
reproductive potential (Jaramillo et al., 2009). Optimum temperatures throughout the growing season contribute to more pest gen-
erations and higher population pressure, increasing the likelihood of insect damage at harvest (Jaramillo et al., 2011). 

Insect pests are also associated with other bean defects. Mealybugs, regarded as a key pest in the study region, may increase the 
presence of black beans due to their sap feeding activity (Ribeyre and Avelino, 2012). High temperatures promote the presence of 
mealybugs (Jayakumar and Rajavel, 2019) and might explain the observed relationship between high late season temperatures and the 
presence of black beans. Brown beans that may evolve into black beans can be caused by anthracnose. We found no previous infor-
mation on the relationship between anthracnose incidence in robusta coffee and temperature. However, in laboratory conditions 
Colletotrichum gloeosporioides isolates obtained from coffee berries in Vietnam showed the highest mycelial growth at 30 ◦C, the highest 
temperature evaluated (Nguyen et al., 2009). 

The risk of mouldy beans also increased as temperatures rose. This is not surprising as high temperatures promote microorganism 
activity, which in turn could promote this coffee bean defect (Poltronieri and Rossi, 2016). Increased temperatures therefore appear to 
be an important climate risk that needs to be understood and managed in order to reduce particular causes of coffee bean defects. 

The impacts of rainfall and temperature interacted. The impact of rainfall on total defects varied such that at high minimum 
temperatures (>22 ◦C), increasing rainfall increased the risk of defects, while at lower minimum temperatures (~20 ◦C) increasing 
rainfall reduced the risk of defects. The combination of high rainfall and high overnight temperatures are likely favourable for mould 
growth (FAO, 2006). These complex interactions highlight the need to take into account multiple climate risks simultaneously when 
assessing climate risk impacts on coffee beans. 

Additional to interactions between rainfall and temperature, there were also differential responses across seasons. For example, 
while the most parsimonious model for explaining total defects contained harvest rainfall and temperature, the best models for specific 
defects (e.g. insect damage, mouldy and black beans) comprised climate variables from early growing, late growing and harvest. As 
such, while any particular defect might be driven by a particular season(s) climate, the overall combination of defects (that is when the 

Fig. 6. Probability of above average coffee bean defects in response to interactions between total harvest rainfall and minimum temperatures during 
harvest. Results are based on responses from the best model for total defects (see Table 2). 
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combination of each defect leads to high total defects) are best explained by climatic conditions during harvest. 

4.3. Implications – rainfall and temperature impacts on robusta coffee bean characteristics 

The coffee industry in Vietnam, the largest producer of robusta coffee in the world, is dominated by smallholders with 85% of all 
farms being under 1 ha and only 1% being more than 5 ha (D’haeze et al. 2005). Smallholder farmers also produce large amounts of 
robusta coffee in Indonesia, Brazil, Uganda and India (ICO, 2019). Like Vietnam, these countries are subject to high variability in 
rainfall, with droughts and floods common and anticipated to intensify under climate change (Schmidt-Thome et al., 2015; Pham- 
Thanh et al., 2020). Climatic conditions that reduce coffee bean profitability (e.g. because of increased defects) has widespread and 
high cumulative impacts. This study suggests that the climate poses a key risk to the quality (i.e. beans of sufficient size and limited 
defects) of robusta coffee that smallholder farmers can produce. Understanding and managing the impacts of adverse climatic con-
ditions on robusta coffee beans should therefore be seen as imperative part of ensuring the future income and sustainability of small 
holder robust farmers throughout the world’s tropics. 

This study identified seasonally important rainfall and temperature conditions that could inform management actions to mitigate 
and reduce the impact of climate on robusta coffee farmers. During flowering high temperatures increased the risk of small beans, 
while in the growing season low rainfall and cool temperatures increased the risk of small beans. In the harvest season high rainfall and 

Fig. 7. Probability of below average coffee bean size (screen size over 16) in relation to each climate predictor in the best model (see Table 2), while 
all other predictors are held at their mean. Shaded areas are 95% confidence intervals. 
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minimum temperatures increased the risk of coffee bean defects. Specific and seasonally adapted management actions (e.g. irrigation, 
pest management and the use of shade trees to manage temperatures) (Vaast et al., 2006) are likely needed to target the drivers of 
coffee bean defects and small bean size throughout the different stages of the coffee production cycle (i.e. from flowering through 
harvest). Successfully mitigating these climate impacts within each season should in turn reduce the risk of defects and small coffee 
beans and so increase the price farmers are able to get for their coffee beans - especially during adverse climatic conditions. 

The development of seasonally targeted management aimed at reducing the risk of defects and small beans opens the way for 
management that can be linked to forecasts. This would allow climate risks to be proactively adapted year to year based on forecasted 
climatic conditions. In several South Asian countries that grow robusta, climate forecasts can provide accurate assessments about 
drought and excessive rainfall risk 1–4 months in advance (Phelps et al., 2004). With the forewarning of such forecasts, for example an 
increased risk of wet harvest conditions then farmers could alter picking times and/or sourcing mechanical drying equipment or 
shelter. 

Similarly, with forewarning of upcoming drought conditions during the growing season, farmers could also increase irrigation to 
offset the negative effects of low rainfall on bean size. However, we acknowledge that trends in future precipitation are highly un-
certain and increased use of irrigation may have limited benefit and lead to the unsustainable use of water resources (Byrareddy et al., 
2020). Whether increases in precipitation, or strategic irrigation would be sufficient to offset the increases in risk from rising mean 
maximum temperatures is an important avenue for future research. 

4.4. Limitations and future directions 

Further research is needed to separate the impact of in-field versus post-harvest drivers of poor coffee bean characteristics, which 
could help quantify the importance of post-harvest management strategies and how they could be used to mitigate climate induced 
coffee bean deficiencies. The current study focused on physical attributes (bean size and defects), which are only two components of 
coffee quality. In addition to a bean’s physical attributes, coffee quality is also influenced by biochemical bean content and organo-
leptic properties. Understanding the links between these different components of coffee bean quality and how they respond to climate 
variability is an important avenue for future research. 

Our study was carried out using data at the farm level and so was restricted to understanding the key climatic drivers of coffee bean 
defects and size at this scale. We therefore acknowledge that the physiological mechanisms behind the relationship between coffee 
bean characteristic and climate needs further research, ideally at the plant scale and in experimental settings. For example, under-
standing the physiological mechanisms behind the causes of small bean sizes and the role of differential rainfall and temperature 
impacts depending on season could have important implications for minimizing not only small beans, but also help to better un-
derstand the drivers of productivity more generally. 

Our study was restricted to Lam Dong province in the central highlands of Vietnam. Indonesia, Brazil, Uganda and India all produce 
large amounts of robusta coffee and all are frequently impacted by drought that are likely to intensify under climate change (Dai, 
2013). In these countries alone, 2018/19 Robusta production exceeded three billion US dollars (Uganda, 388 Million, India 360 
Million, Indonesia 942 Million and Brazil 1.6 Billion, USDA 2019) and so any impact on coffee beans that reduces this value is likely to 
be collectively large (e.g. in the 10′s of millions of dollars). Indeed, recent news article report how heavy rainfall increased coffee bean 
deficiencies with subsequent impacts on coffee profitability and supply (Binh Minh, 2017; Ionova, 2017). We are not aware of any 
research that has quantified the climatic conditions and associated costs of unfavourable rainfall and temperature conditions on coffee 
bean characteristics in these countries (but see Martins et al., 2018). The high economic value of robusta to these countries emphasizes 
the importance of the results found here and highlights the need for future research to understand and manage the financial impacts of 
climate on coffee bean characteristics and coffee production sustainability more generally. 

5. Conclusion 

Robusta coffee exports underpin the economies and rural communities of countries throughout the tropics. The price farmers can 
get for their coffee is largely affected by coffee bean characteristics – however there has been limited research on how climate impacts 
robusta coffee bean characteristics. Our results suggest that there are important seasonal differences in how climate affects coffee bean 
size and coffee bean defects. Low rainfall during the late growing season was associated with smaller beans, while low rainfall during 
the early growing season and flowering had the opposite effect. Higher rainfall during harvest was associated with an increased chance 
of coffee bean defects, but the effect of rainfall was moderated, or interacted, with temperature. Several sub-components of coffee bean 
defects (e.g. mouldy beans and insect damage) were also related to climate during the early and late growing season. With this in-
formation farmers and the coffee industry could develop targeted proactive (e.g. irrigation based on forecasts) systems to manage 
climate risks that reduce the likelihood of negative coffee bean characteristics. Ultimately, better management of climate risks that 
reduces coffee bean defects and small coffee beans would increase the income of farmers and countries dependent on robusta coffee 
production. 

Fig. 8. Probability below average coffee bean size for each particular size class in relation to each climate predictors with the strongest effect in the 
best model (see Table 2), while all other predictors are held at their mean. Shaded areas are 95% confidence intervals. 
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